一种基于Bernoulli混沌的四相编码OFDM雷达信号设计方法

霍凯 赵晶晶

霍凯, 赵晶晶. 一种基于Bernoulli混沌的四相编码OFDM雷达信号设计方法[J]. 雷达学报, 2016, 5(4): 361-372. doi: 10.12000/JR16050
引用本文: 霍凯, 赵晶晶. 一种基于Bernoulli混沌的四相编码OFDM雷达信号设计方法[J]. 雷达学报, 2016, 5(4): 361-372. doi: 10.12000/JR16050
Huo Kai, Zhao Jingjing. A Design Method of Four-phase-coded OFDM Radar Signal Based on Bernoulli Chaos[J]. Journal of Radars, 2016, 5(4): 361-372. doi: 10.12000/JR16050
Citation: Huo Kai, Zhao Jingjing. A Design Method of Four-phase-coded OFDM Radar Signal Based on Bernoulli Chaos[J]. Journal of Radars, 2016, 5(4): 361-372. doi: 10.12000/JR16050

一种基于Bernoulli混沌的四相编码OFDM雷达信号设计方法

doi: 10.12000/JR16050
基金项目: 

自然科学基金青年科学基金(61501481),中国航天科技集团公司航天科技创新基金

详细信息
    作者简介:

    霍凯(1983-),男,湖北黄冈人,博士,毕业于国防科学技术大学,现任国防科学技术大学电子科学与工程学院讲师,主要研究方向为雷达波形设计、雷达信号处理。E-mail:huokai2001@163.com;赵晶晶(1990-),女,籍贯江苏省扬州市,现为国防科学技术大学电子科学与工程学院在读博士研究生,主要研究方向为雷达波形设计。E-mail:xiaosatianyu@163.com

    通讯作者:

    霍凯huokai2001@163.com

A Design Method of Four-phase-coded OFDM Radar Signal Based on Bernoulli Chaos

Funds: 

This Research is Funded in Part by the Natural Science Foundation of China (61501481), The Foundation of China Aerospace Science and Technology Corporation

  • 摘要: 相位编码正交频分复用(OFDM)雷达具有许多优良的性能,近年来受到雷达界的广泛关注。但在实际应用中,相位编码OFDM雷达信号存在优良编码数量不多、长度受限、峰均比过高等问题。该文针对这些问题,提出了一种基于Bernoulli混沌的四相编码OFDM雷达信号设计方法,可以构建任意数量和长度的编码,具有更大的设计自由度,并且通过初相加权,得到包络峰均比小于2的混沌四相编码OFDM信号,该信号在高分辨、多普勒等方面具有较多优良特性。

     

  • [1] 佟学俭, 罗涛. OFDM移动通信技术原理与应用[M]. 北京: 人民邮电出版社, 2003. Tong Xuejian and Luo Tao. The Principle and Application of OFDM Mobile Communication Technology[M]. Beijing: The Peoples Posts and Telecommunications Press, 2003.
    [2] Jankiraman M, Wessels B J, and Van Genderen P. Design of a multifrequency FMCW radar[C]. The 28th European Microwave Conference,Amsterdam, The Netherland, 1998: 548-589.
    [3] Jankiraman M, Wessels B J, and Van Genderen P. Pandora multifrequency FMCW/SFCW radar[C]. IEEE National Radar Conference, Alexandria, VA, USA, 2000: 750-757.
    [4] Alimosaymer M and Mohseni R. Systematic approach in designing wavelet packet modulation-orthogonal frequency division multiplexing radar signal by applying the criterion of least-squares[J]. IET Signal Processing, 2014, 8(5): 475-482.
    [5] Sen S. Adaptive OFDM radar waveform design for improved micro-Doppler estimation[J]. IEEE Sensors Journal, 2014, 14(10): 3548-3556.
    [6] Sen S. PAPR-constrained pareto-optimal waveform design for OFDM-STAP radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3658-3669.
    [7] Levanon N and Mozeson E. Radar Signals[M]. New York: John Wiley Sons, Inc., Hoboken, 2004: 327-372.
    [8] 李自琦, 梅进杰, 胡登鹏, 等. 限幅法降低OFDM雷达通信一体化系统PAPR研究[J]. 雷达科学与技术, 2014, 12(4): 406-410. Li Ziqi, Mei Jinjie, Hu Dengpeng, et al.. Research on deliberate clipping for PAPR reduction of integrated radar and communication systems based on OFDM signals[J]. Radar Science and Technology, 2014, 12(4): 406-410.
    [9] Huang Tianyao and Zhao Tong. Low PMEPR OFDM radar waveform design using the iterative least squares algorithm[J]. IEEE Signal Processing Letters, 2015, 22(11): 1975-1979.
    [10] Wang Wenqin, So H C, Huang Longting, et al.. Low peak-to-average ratio OFDM chirp waveform diversity design[C]. IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP),Florence, Italy, 2014: 8351-8354.
    [11] 霍凯, 姜卫东, 黎湘, 等. 一种新的OFDM相位编码频率步进雷达信号及其特性[J]. 电子与信息学报, 2011, 33(3): 677-683. Huo Kai, Jiang Weidong, Li Xiang, et al.. A new OFDM phase-coded stepped-frequency radar signal and its characteristic[J]. Journal of Electronics Information Technology, 2011, 33(3): 677-683.
    [12] Huo Kai, Deng Bin, Liu Yongxiang, et al.. Hign resolution range profile analysis based on multicarrier phase-coded waveforms of OFDM radar[J]. Chinese Journal of Systems Engineering and Electronics, 2011, 22(3): 421-427.
    [13] Levanon N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(6): 276-284.
    [14] Levanon N. Multicarrier radar signals with low peak-to-mean envelope power ratio[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(2): 71-77.
    [15] Sebt M A, Sheikhi A, and Nayebi M M. Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio[J]. IET Radar, Sonar Navigation, 2009, 3(2): 122-132.
    [16] Alimosaymer Mostafa and Mohseni Reze. Systematic approach in designing wavelet packet modulation-orthogonal frequency division multiplexing radar signal by applying the criterion of least squares[J]. IET Signal Processing, 2014, 8(5): 475-482.
    [17] Guo T and Qiu R. OFDM waveform design compromising spectral nulling, side-lobe suppression and range resolution[C]. IEEE Radar Conference, Cincinnati, USA, 2014: 1424-1429.
    [18] Harman S and Qineti Q. The Diversity of Chaotic Waveforms in Use and Characteristics[M]. UK: IET Michael Faraday House, 2009: 33-39.
    [19] 丁凯. 混沌信号合成孔径雷达研究[D]. [博士论文], 中国科学院电子学研究所, 2009. Ding Kai. Researches on chaotic signal synthetic aperture radar[D]. [Ph.D. dissertation], Institute ofElectronics, Chinese Academy of Sciences, 2009.
    [20] Huang Qiongdan, Li Yong, Cheng Wei, et al.. A new multicarrier chaotic phase coded stepped-frequency pulse train radar signal and its characteristic analysis[C]. IEEE 10th Conference on Industrial Electronics and Applications, Auckland, New Zealand, 2015: 444-448.
    [21] 郑维敏. 正反馈[M]. 北京: 清华大学出版社, 1998. Zheng Weimin. Positive Feedback[M]. Beijing: Tsinghua University Press, 1998.
    [22] Li T Y and Yorke J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985-992.
    [23] Ruggiano M and Van Genderen P. Radar and communication waveform: wideband ambiguity function and narrowband approximation[C]. IET Conference Publications, Edinburgh, UK, 2007: 1-5.
  • 加载中
计量
  • 文章访问数:  2286
  • HTML全文浏览量:  477
  • PDF下载量:  893
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-02
  • 修回日期:  2016-07-03
  • 网络出版日期:  2016-08-28

目录

    /

    返回文章
    返回