基于数值天气预报模式的机载气象雷达降雨目标极化特性仿真

刘夏 韩雁飞 李海 卢晓光 吴仁彪

刘夏, 韩雁飞, 李海, 卢晓光, 吴仁彪. 基于数值天气预报模式的机载气象雷达降雨目标极化特性仿真[J]. 雷达学报, 2016, 5(2): 190-199. doi: 10.12000/JR16048
引用本文: 刘夏, 韩雁飞, 李海, 卢晓光, 吴仁彪. 基于数值天气预报模式的机载气象雷达降雨目标极化特性仿真[J]. 雷达学报, 2016, 5(2): 190-199. doi: 10.12000/JR16048
Liu Xia, Han Yanfei, Li Hai Lu, Xiaoguang, Wu Renbiao. Polarization Characteristics Simulation of Airborne Weather Radar Rainfall Target Based on Numerical Weather Prediction[J]. Journal of Radars, 2016, 5(2): 190-199. doi: 10.12000/JR16048
Citation: Liu Xia, Han Yanfei, Li Hai Lu, Xiaoguang, Wu Renbiao. Polarization Characteristics Simulation of Airborne Weather Radar Rainfall Target Based on Numerical Weather Prediction[J]. Journal of Radars, 2016, 5(2): 190-199. doi: 10.12000/JR16048

基于数值天气预报模式的机载气象雷达降雨目标极化特性仿真

DOI: 10.12000/JR16048
基金项目: 

国家自然科学基金(61471365, 61231017, U1533110),中央高校基本科研业务费资助项目(3122015B002)

详细信息
    作者简介:

    刘夏(1989–),男,陕西西安人,中国民航大学电子信息与自动化学院硕士研究生,主要研究方向为机载气象雷达回波信号仿真。E-mail:qwe14789cn@gmail.com韩雁飞(1987–),女,新疆乌鲁木齐人,中国民航大学电子信息与自动化学院讲师,硕士,主要研究方向为机载气象雷达信号处理、低空风切变检测。E-mail:yfhan@cauc.edu.cn李海(1976–),男,天津人,中国民航大学电子信息与自动化学院副教授,硕士生导师,主要研究方向为干涉合成孔径雷达信号处理、空时自适应信号处理。E-mail:lihai1976@sina.com卢晓光(1983–),男,山西忻州人,中国民航大学电子信息与自动化学院讲师,博士,主要研究方向为机载气象雷达信号处理。E-mail:xglu@cauc.edu.cn吴仁彪(1966–),男,湖北省武汉市人,中国民航大学教授,博士生导师,IEEE高级会员,民航特聘专家,主要研究方向为自适应信号处理、高分辨率雷达成像与自动目标识别、民航无线电干扰检测与自适应抑制、民航遥感信息处理与应用。E-mail:rbwu@cauc.edu.cn

    通讯作者:

    韩雁飞yfhan@cauc.edu.cn

Polarization Characteristics Simulation of Airborne Weather Radar Rainfall Target Based on Numerical Weather Prediction

Funds: 

The National Natural Science Foundation of China (61471365, 61231017, U1533110), Fundamental Research Funds for the Central Universities (3122015B002)

  • 摘要: 带有极化信息的气象目标仿真是双极化多普勒天气雷达的理论研究和设计应用的基础。目前, 机载双极化气象雷达的理论研究正处于发展阶段, 为了给机载双极化气象雷达的技术研究提供数据来源, 该文提出了一种基于数值天气预报模式的机载气象雷达降雨目标极化特性仿真方法。该方法利用数值天气预报模式获得温度、粒子浓度、混合比等降雨目标的气象参数, 从而实现气象场景的建模与仿真。在分析降雨目标微物理特性的基础上, 计算降雨目标的电磁散射矩阵, 从而实现降雨目标的极化特性仿真。不同微物理特性参数下的仿真结果表明:该方法可实现降雨目标的气象建模, 与实测数据的对比分析可知, 该方法的双极化仿真结果有效、可靠。

     

  • [1] Lupidi A, Moscardini C, Garzelli A, et al.. Polarimetry applied to avionic weather radar: improvement on meteorological phenomena detection and classification[C]. 2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), Capri, 2011: 7377.
    [2] Woodell D L, West J B, Elsallal W A, et al.. Weather radar system and method using dual polarization antenna[P]. US, 008098189B1, 2012.
    [3] Bunch B P and Christianson P. System and method to identify regions of airspace having ice crystals using an onboard weather radar system[P]. US, 20130234884A1, 2013.
    [4] Khatwa R and Mathan S. Enhanced alerting of characteristic weather hazards[P]. US, 008395541B2, 2013.
    [5] Ratan K and Dave P. Methods and systems for presenting weather hazard information on an in-trial procedures display[P]. EP, 2354805A1, 2011.
    [6] Waterman P C. Matrix formulation of electromagnetic scattering[J]. Proceedings of the IEEE, 1965, 53(8): 805812.
    [7] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagaction,
    [8] 1966, 14(3): 302307.
    [9] 许丽生, 陈洪滨, 丁继烈, 等. 非球形粒子光散射计算研究的进展综述[J]. 地球科学进展, 2014, 29(8): 903912.
    [10] Xu Li-sheng, Chen Hong-bin, Ding Ji-lie, et al.. Summary of non-spherical particles in progress calculation of light scattering[J]. Advances in Earth Science, 2014, 29(8): 903912.
    [11] Li Z Z, Zhang Y, Zhang G, et al.. A microphysics-based simulator for advanced airborne weather radar development[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 13561373.
    [12] Lupidi A, Moscardini C, Berizzi F, et al.. Simulation of X-band polarimetric weather radar returns based on the Weather Research and Forecast Model[C]. 2011 IEEE Radar Conference (RADAR), Kansas, 2011: 734739.
    [13] Augros C, Caumont O, Ducrocq V, et al.. Development and validation of a full polarimetric radar simulator[C]. 36 th Conference on Radar Meteorology, Breckenridge, 2013: 387.
    [14] Lischi S, Lupidi A, Martorella M, et al.. Advanced polarimetric Doppler weather radar simulator[C]. IEEE 2014 15th International Radar Symposium (IRS), Gdansk, 2014: 16.
    [15] Andsager K, Beard K V, and Laird N F. Laboratory measurements of axis ratios for large raindrops[J]. Journal of the Atmospheric Sciences, 1999, 56(15): 26732683.
    [16] Zhang G, Vivekanandan J, and Brandes E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 830841.
    [17] Keenan T D, Carey L D, Zrnic D S, et al.. Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution[J]. Journal of Applied Meteorology, 2001, 40(3): 526545.
    [18] Brandes E A, Zhang G, and Vivekanandan J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment[J]. Journal of Applied Meteorology, 2002, 41(6): 674685.
    [19] Thurai M, Huang G J, Bringi V N, et al.. Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(6): 10191032.
    [20] Leinonen J. High-level interface to T-matrix scattering calculations: architecture, capabilities and limitations[J]. Optics Eexpress, 2014, 22(2): 16551660.
    [21] Bringi V N and Chandrasekar V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge University Press, 2001: 161210.
    [22] Jameson A R and Mueller E A. Estimation of propagation-differential phase shift from sequential orthogonal linear polarization radar measurements[J]. Journal of Atmospheric and Oceanic Technology, 1985, 2(2): 133137.
  • 加载中
计量
  • 文章访问数:  4025
  • HTML全文浏览量:  574
  • PDF下载量:  1057
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-04-12
  • 网络出版日期:  2016-04-28

目录

    /

    返回文章
    返回