基于人造目标极化HRRP的散射机理分类

吴佳妮 陈永光 代大海 庞礴 王雪松

吴佳妮, 陈永光, 代大海, 庞礴, 王雪松. 基于人造目标极化HRRP的散射机理分类[J]. 雷达学报, 2016, 5(2): 174-181. doi: 10.12000/JR16026
引用本文: 吴佳妮, 陈永光, 代大海, 庞礴, 王雪松. 基于人造目标极化HRRP的散射机理分类[J]. 雷达学报, 2016, 5(2): 174-181. doi: 10.12000/JR16026
Wu Jiani, Chen Yongguang, Dai Dahai, Pang Bo, Wang Xuesong. Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target[J]. Journal of Radars, 2016, 5(2): 174-181. doi: 10.12000/JR16026
Citation: Wu Jiani, Chen Yongguang, Dai Dahai, Pang Bo, Wang Xuesong. Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target[J]. Journal of Radars, 2016, 5(2): 174-181. doi: 10.12000/JR16026

基于人造目标极化HRRP的散射机理分类

doi: 10.12000/JR16026
基金项目: 

国家自然科学基金(61302143, 61490693, 41301490),国家高技术研究发展计划(2013AA122202)

详细信息
    通讯作者:

    代大海ddh1206@163.com

Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target

Funds: 

The National Natural Science Foundation of China (61302143, 61490693, 41301490), National High-Tech RD Program of China (2013AA122202)

  • 摘要: 针对人造目标的极化高分辨距离像,研究了雷达目标的空域极化特性和频率色散特性及其在散射机理分类中的应用。基于散射中心,利用极化分解技术对散射机理的类型进行判别,并分析了极化方位角补偿技术对由目标方位角变化而引起的类型误判的改善。此后结合目标的频率色散特性,得到了散射中心的特征矢量与典型结构间的对应关系,降低了类型判别的不准确性。通过仿真实验,验证了散射中心散射机理分类的有效性,为目标的分类识别提供了支撑与依据。

     

  • [1] 黄培康, 殷红成, 许小剑, 等. 雷达目标特性[M]. 北京: 电子工业出版社, 2005. Huang P K, Yin H C, Xu X J, et al.. Radar Target Signature[M]. Beijing: Publishing House of Electronics Industry, 2005.
    [2] Jackson J A. Three-dimensional feature models for synthetic aperture radar and experiments in feature extraction[D]. [Ph.D. dissertation], Ohio State University, 2009.
    [3] 徐牧, 王雪松, 肖顺平, 等. 基于散射机理分类与方位对称性判决的极化SAR人造目标提取[J]. 国防科技大学学报, 2008, 30(5): 6872. Xu M, Wang X S, Xiao S P, et al.. Man-made target extraction based on scattering mechanism identification and azimuthal symmetry decision of POLSAR images[J]. Journal of National University of Defense Technology, 2008, 30(5): 6872.
    [4] 徐牧. 极化 SAR 图像人造目标提取与几何结构反演研究[D]. [博士论文], 国防科学技术大学, 2008. Xu M. Extraction and geometrical structure retrieval of man-made target in POLSAR imagery[D]. [Ph.D. dissertation], National University of Defense Technology, 2008.
    [5] Fuller D F. Phase history decomposition for efficient scatterer classification in SAR imagery[D]. [Ph.D. dissertation], Air Force Institute of Technology, 2011.
    [6] Saville M A, Jackson J A, and Fuller D F. Rethinking vehicle classification with wide-angle polarimetric SAR[J]. IEEE Aerospace andElectronic Systems Magazine, 2014, 29(1): 4149.
    [7] 冯博, 陈渤, 王鹏辉, 等. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 14571462. Feng B, Chen B, Wang P H, et al.. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(6): 14571462.
    [8] Wang J, Li Y, and Chen K. Radar high-resolution range profile recognition via geodesic weighted sparse representation[J]. IET Radar, Sonar Navigation, 2015, 9(1): 7583.
    [9] Potter L C, Chiang D-M, Carriere R, et al.. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 10581067.
    [10] Potter L C and Moses R. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 7991.
    [11] 代大海. 极化雷达成像及目标特征提取研究[D]. [博士论文], 国防科学技术大学, 2008. Dai D H. Study on polarimetric radar imaging and target feature extraction[D]. [Ph.D. dissertation], National University of Defense Technology, 2008.
    [12] Krogager E. New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 15251527.
    [13] Lee J-S and Pottier E. Polarimetric Radar Imaging: From Basics to Applications[M]. Taylor Francis Group, CRC Press, 2009.
    [14] Kimura H, Papathanassiou K P, and Hajnsek I. Polarization orientation effect in urban areas on PolSAR data[C]. Proceedings of IGARSS 2005, Seoul, 2005, 7: 48634867. 龙江平, 丁晓利, 汪长城. 极化方位角补偿信息支持下的植被参数反演[J]. 测绘学报, 2014, 43(10): 10511060.
    [15] Long J P, Ding X L, and Wang C C. Forest parameters inversion with the support of compensation information of radar polarization orientation angle[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10): 10511060.
    [16] Lee J S, Krogag er E, Schuler D L, et al.. On the estimation of polarization orientation angles induced from azimuth slopes using polarimetric SAR data[C]. IEEE 2000 Processing of International Geoscience and Remote Sensing Symposium, Honolulu, HI, 2000, 3: 13101312.
    [17] Lee J S, Schuler D L, Ainworth T L, et al.. On the estimation of radar polarization orientation shifts induced by terrain slopes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 3041.
    [18] Lee J-S, Schuler D L, and Ainworth T L. Polarimetric SAR data compensation for terrain azimuth slope variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 21532163.
    [19] Dungan K E, Austin C, Nehrbass J, et al.. Civilian vehicle radar data domes[C]. Proceedings of the SPIE, Orlando, 2010, 7699. doi: 10.117/12.850151.
  • 加载中
计量
  • 文章访问数:  2521
  • HTML全文浏览量:  393
  • PDF下载量:  1146
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-30
  • 修回日期:  2016-03-10
  • 网络出版日期:  2016-04-28

目录

    /

    返回文章
    返回