极化合成孔径雷达极化层次和系统工作方式

杨汝良 戴博伟 李海英

杨汝良, 戴博伟, 李海英. 极化合成孔径雷达极化层次和系统工作方式[J]. 雷达学报, 2016, 5(2): 132-142. doi: 10.12000/JR16013
引用本文: 杨汝良, 戴博伟, 李海英. 极化合成孔径雷达极化层次和系统工作方式[J]. 雷达学报, 2016, 5(2): 132-142. doi: 10.12000/JR16013
Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013
Citation: Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013

极化合成孔径雷达极化层次和系统工作方式

DOI: 10.12000/JR16013
基金项目: 

863项目和国家部委基金

详细信息
    通讯作者:

    杨汝良rlyang@mail.ie.ac.cn

Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar

Funds: 

The National 863 Program of China, The National Ministries Foundation

  • 摘要: 极化合成孔径雷达的极化层次和系统工作方式是极化合成孔径雷达总体设计的关键技术之一。该文讨论了极化合成孔径雷达的极化层次,含单极化、双极化、全极化和简缩极化合成孔径雷达,较深入地分析了极化合成孔径雷达系统的工作方式,包括极化时间分割、极化频率分割、极化编码和方位向极化空间分割等方式。

     

  • [1] Kostinski A B and Boerner W M. On foundation of radar polarimetry[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(12): 1395-1403.
    [2] Cloude S R and Pottier E. An entropy based classification scheme for land application of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
    [3] Dong Y, Milne A K, and Forster B C. Segmentation and classification of vegetated areas using polarimetric SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 321-329.
    [4] Freeman A. Fitting a two-component scattering model to polarimetric SAR data from forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2583-2592.
    [5] Mattia F, Floury N, and Moreira A. Foreword to the special issue on retrieval of bio-and geophysical parameters from SAR data for land applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 379-380. DOI: 10.1109/TGRS.2009.2012837.
    [6] Ulaby F T and Elachi Charles. Radar Polarimetry for Geoscience Applications[M]. Artech House Inc, Boston, London, 1990: 281-295.
    [7] Oh Y, Sarabandi K, and Ulaby F T. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation[C]. IEEE Geoscience and Remote Sensing Symposium, Pasadena, 1994, 3: 1582-1584. DOI: 10.1109/IGARSS.1994.399504.
    [8] Dierking W and Wesche C. C-band radar polarimetry useful for detection of icebergs in sea ice?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 25-37.
    [9] He Yijun, Perrie W, and Xie Tao, et al.. Ocean wave spectra from a linear polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2623-2631.
    [10] Zhang B, Perrie W, and Vachon P W, et al.. Ocean vector winds retrieval from C-band fully polarimetric SAR measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4252-4261.
    [11] Novak L M, Sechtin M B, and Cardullo M J. Studies of target detection algorithms that use polarimetric radar data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 150-165.
    [12] Monaldo F. SEASAT sees the winds with SAR[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 1: 38-40. DOI: 10.1109/IGARSS.2003.1293671.
    [13] Monaldo F M, Jackson C R, and Pichel W G. Seasat to RADARSAT-2: research to operations[J]. Oceanography, 2013, 26(2): 34-45.
    [14] Desnos Y L, Buck C, Guijarro J, et al.. The envisat advance synthetic aperture radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, 2000, 3: 1171-1173. DOI: 10.1109/IGARSS.2000.858057.
    [15] Hawkins R K, Touzi R, Wolfe J, et al.. ASAR AP mode performance and applications potential[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 2: 1115-1117. DOI: 10.1109/IGARSS.2003.1294029.
    [16] Freeman A, Alves M, Chapman B, et al.. SIR-C data quality and calibration results[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 848-857. DOI: 10.1109/36.406671.
    [17] Jordan R L, Huneycutt B L, and Werner M. The SIR-C\X-SAR synthentic aperture radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 829-839. DOI: 10.1109/36.406669
    [18] Fox Peter A, Luscombe Anthony P, and Thompson Alan A. Radarsat-2 SAR modes development and utilization[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 258-264.
    [19] Fujimra T and Kimura T. Compact polarimetric observation using phased array antenna and its case study for PALSAR[C]. EUSAR, 2008: 1-4.
    [20] Mittermayer J and Runge H. Conceptual studies for exploiting the TerraSAR-X dual receive antenna[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 3: 2140-2142. DOI: 10.1109/IGARSS.2003.1294365.
    [21] Stangl M, Werninghaus R, and Zahn R. The TerraSAR-X active phased array antenna[C]. IEEE International Symposium on Phased Array Systems and Technology, 2003: 70-75. DOI: 10.1109/PAST.2003.1256959.
    [22] ME Nord, Ainsworth T L, Lee J S, et al.. Comparison of compact polarimetric synthetic aperture radar modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 174-188.
    [23] Spudis P, Nozette S, Bussey B, et al.. Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon[J]. Current Science, 2009, 96(4): 533-539.
    [24] Raney R K, Spudis P D, Bussey B, et al.. The lunar mini-RF radars: hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2010, 99(5): 808-823.
    [25] Misra Tapan, Rana S S, Bora V H, et al.. SAR Payload of Radar Imaging Satellite (RISAT) of ISRO[C]. EUSAR, 2006: 1-4.
    [26] Geldsetzer T, Arkett M, and Zagon T. All season assessment of RADARSAT constellation mission compact polarimetry modes for canadian ICE service operational implementation[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, 2014: 1560-1563. DOI: 10.1109/IGARSS.2014.6946737.
    [27] Souyris J C and Mingot S. Polarimetry based on one transmitting and two receiving polarizations: the /4 mode[C]. IEEE International Geoscience and Remote Sensing Symposium, 2002, 1: 629-631. DOI: 10.1109/IGARSS.2002.1025127.
    [28] Souyris J C, Imbo P, Fjortoft R, et al.. Compact polarimetry based onsymmetry properties of geophysical media: the /4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634-646. DOI: 10.1109/TGRS.2004.842486.
    [29] Raney R K. Hybrid-polarity SAR architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3397-3404. DOI: 10.1109/TGRS.2007.895883.
    [30] Raney R K. Hybrid-quad-pol SAR[C]. IEEE Geoscience and Remote Sensing Symposium, 2008, 4: 491-493. DOI: 10.1109/IGARSS.2008.4779765.
    [31] 戴博伟. 多极化合成孔径雷达系统与极化信息处理研究[D]. [博士论文], 中国科学院电子研究所, 2000. Dai Bowei. The research of polarimetric SAR system and polarimetric information processing[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2000.
    [32] Raney R K. Dual-polarized SAR and Stokes parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 317-319.
    [33] COSMO-SkyMed System Description User Guide[R]. 4 May, 2007.
    [34] COSMO-SkyMed System HandBook[R]. 30 April, 2007.
    [35] Shirvany R, Chabert M, and Tourneret J Y. Comarision of ship detection on performance based on the degree of polarization in hybrid/compact and linear dual-pol SAR imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, 2011: 3550-3553. DOI: 10.1109/IGARSS.2011.6049988.
    [36] Lardeux C, Niamen D, Routier J B, et al.. Use of PALSAR polarimetric data for tropical forest stratification and comparison of simulated dual and compact polarimetric modes[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, 2010: 1855-1858. DOI: 10.1109/IGARSS.2010.5650441.
    [37] Singh G, Yamaguchi Y, Park Sang-Eun, et al.. Categorization of the glaciated terrain of indian himalaya using CP and FP mode SAR[J]. IEEE Journal of Earth Observations and Remote Sensing, 2014, 7(3): 872-880. DOI: 10.1109/JSTARS.2013.2266354.
    [38] Yin Junjun, Yang Jian, Zhou Zheng-Shu, et al.. The extended bragg scattering model-based method for ship and oil-spill observation using compact polarimetric SAR[J]. IEEE Journal of Earth Observations and Remote Sensing, 2015, 8(8): 3760-3772. DOI: 10.1109/JSTARS.2014.2359141.
  • 加载中
计量
  • 文章访问数:  2401
  • HTML全文浏览量:  897
  • PDF下载量:  1956
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-03-14
  • 网络出版日期:  2016-04-28

目录

    /

    返回文章
    返回