基于稀疏采样的空间碎片群目标成像方法

朱江 邓佳欣 廖桂生 朱圣棋

朱江, 邓佳欣, 廖桂生, 朱圣棋. 基于稀疏采样的空间碎片群目标成像方法[J]. 雷达学报, 2016, 5(1): 82-89. doi: 10.12000/JR16012
引用本文: 朱江, 邓佳欣, 廖桂生, 朱圣棋. 基于稀疏采样的空间碎片群目标成像方法[J]. 雷达学报, 2016, 5(1): 82-89. doi: 10.12000/JR16012
Zhu Jiang, Deng Jiaxin, Liao Guisheng, Zhu Shengqi. Space Group Debris Imaging Based on Sparse Sample[J]. Journal of Radars, 2016, 5(1): 82-89. doi: 10.12000/JR16012
Citation: Zhu Jiang, Deng Jiaxin, Liao Guisheng, Zhu Shengqi. Space Group Debris Imaging Based on Sparse Sample[J]. Journal of Radars, 2016, 5(1): 82-89. doi: 10.12000/JR16012

基于稀疏采样的空间碎片群目标成像方法

doi: 10.12000/JR16012
基金项目: 

国家自然科学基金重点项目(61231017),国家重大研究计划(91438106),陕西青年科技新星(2014KJXX-48),陕西省自然基金(2015JQ6206)

详细信息
    作者简介:

    朱江(1989-),男,陕西人,西安电子科技大学博士生,主要从事压缩感知理论、贝叶斯稀疏重构理论、结构稀疏理论、高速运动平台下的目标运动补偿方法及稀疏ISAR成像技术方面研究。E-mail:jiang_z_2012@163.com邓佳欣(1991-),女,陕西人,西安电子科技大学硕士,中国飞行实验研究院助理工程师,主要从事压缩感知理论及其在宽带信号DOA估计、相干源信号DOA估计应用以及空域雷达目标散射特性、航迹拟合等方面研究。E-mail:jxdeng0501@163.com廖桂生(1963-),男,广西人,西安电子科技大学教授,博士生导师,主要从事自适应信号处理、阵列信号处理、信号检测与估计和智能天线信号处理技术方面研究。E-mail:liaogs@xidian.edu.cn朱圣棋(1984-),男,江西人,西安电子科技大学副教授,博士生导师,主要从事机载/星载雷达地面运动目标检测与定位方面研究。E-mail:zhushengqi8@163.com

    通讯作者:

    朱江jiang_z_2012@163.com

Space Group Debris Imaging Based on Sparse Sample

Funds: 

The National Natural Science Foundation of China (61231017), National Basic Research Program of China (91438106), Shaanxi Youth Science and Technology New Star (2014KJXX-48), Natural Fund of Shaanxi Province (2015JQ6206)

  • 摘要: 低重频、短数据条件下的雷达成像是比较困难的,同时,星载平台观测的碎片目标多以群目标形式出现。针对窄带条件下的空间碎片群目标成像问题,该文提出了一种基于稀疏重构的空间碎片群目标成像方法。由于空间碎片通常存在高速自旋现象,且碎片之间因质量、密度等物理差异存在明显的转速差,利用观测时间内碎片群的多周期观测数据与转速差异性,结合回波的自相关特性,能有效实现碎片群的转速检测。由于碎片在空域具有强稀疏特性,结合碎片转速,利用观测矩阵抽取数据,可以实现等效插值操作,并且将稀疏重构得到的数据进行重排,即可得到各个目标的像。抽取操作能够一定程度地抑制其他碎片的回波能量,并解决在低重频条件下的多普勒模糊问题。理论分析证明了该文所提方法的有效性,仿真实验表明,该文所提方法能够在低重频条件下实现对碎片群目标的分别成像。

     

  • [1] Abdel-Aziz Y A. An analytical theory for avoidance collision between space debris and operating satellites in LEO[J]. Applied Mathematical Modeling, 2013, 37(18/19): 8283-8291.
    [2] Xing Meng-dao and Bao Zheng. High resolution ISAR imaging of high speed moving targets[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(2): 58-67.
    [3] 李道京, 刘波, 尹建凤, 等. 天基毫米波空间碎片观测雷达系统分析与设计[J]. 宇航学报, 2010, 31(12): 2746-2753. Li Dao-jing, Liu Bo, Yin Jian-feng, et al.. Analysis and design of spaceborne MMW radar for space debris observation system[J]. Journal of Astronautics, 2010, 31(12): 2746-2753.
    [4] 王洋, 陈建文, 刘中, 等, 多运动目标ISAR成像方法研究[J]. 宇航学报, 2005, 26(4): 450-454. Wang Yang, Chen Jian-wen, Liu Zhong, et al.. Research on ISAR imaging of multiple moving targets[J]. Journal of Astronautics, 2005, 26(4): 450-454.
    [5] Xiao Da, Su Fu-lin, and Wu Jia-wei. A method of ISAR imaging for multiple targets[C]. 2012 IEEE 11th International Conference on Signal Processing (ICSP), 2012, 3: 2011-2015.
    [6] Sato T. Shape estimation of space debris using single-range Doppler interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 1000-1005.
    [7] Zhang Lei, Li Ya-chao, Liu Yan, et al.. Time-frequency characteristics based motion estimation and imaging for high speed spinning targets via narrowband waveforms[J]. SCIENCE CHINA Information Sciences, 2010, 53(8): 1628-1640.
    [8] Wang Qi, Xing Meng-dao, Lu Guang-yue, et al.. SRMF-CLEAN imaging algorithm for space debris[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3524-3533.
    [9] Wang Qi, Xing Meng-dao, Lu Guang-yue, et al.. Single range matching filtering for space debris radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 576-580.
    [10] Zhu Jiang, Zhu Sheng-qi, and Liao Gui-sheng. High-resolution radar imaging of space debris based on sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(10): 2090-2094.
    [11] Cands E J and Wakin M B. An Introduction To Compressive Sampling[J]. Signal Processing Magazine, 2008, 25(2): 21-30.
    [12] Mohimani G H, Babaie-Zadeh M, and Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
    [13] Zhu Dai-yin, Wang Ling, Yu Yu-sheng, et al.. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204-208.
    [14] Ye W, Yeo T S, and Bao Zheng. Weighted least-squares estimation of phase errors for SAR/ISAR autofocus[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2487-2494.
    [15] Gerry M J, Potter L C, Gupta I J, et al.. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179-1188.
    [16] Varshney K R, etin M, Fisher J W, et al.. Sparse representation in structured dictionaries with application to synthetic aperture radar[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3548-3561.
  • 加载中
计量
  • 文章访问数:  2931
  • HTML全文浏览量:  539
  • PDF下载量:  1093
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-15
  • 修回日期:  2016-01-28
  • 网络出版日期:  2016-02-28

目录

    /

    返回文章
    返回