参数化稀疏表征在雷达探测中的应用

李刚 夏香根

赵军香, 梁兴东, 李焱磊. 一种基于似然比统计量的SAR相干变化检测[J]. 雷达学报, 2017, 6(2): 186-194. doi: 10.12000/JR16065
引用本文: 李刚, 夏香根. 参数化稀疏表征在雷达探测中的应用[J]. 雷达学报, 2016, 5(1): 1-7. doi: 10.12000/JR15126
Zhao Junxiang, Liang Xingdong, Li Yanlei. Change Detection in SAR CCD Based on the Likelihood Change Statistics[J]. Journal of Radars, 2017, 6(2): 186-194. doi: 10.12000/JR16065
Citation: Li Gang, Xia Xiang-Gen. Parametric Sparse Representation and Its Applications to Radar Sensing[J]. Journal of Radars, 2016, 5(1): 1-7. doi: 10.12000/JR15126

参数化稀疏表征在雷达探测中的应用

DOI: 10.12000/JR15126
基金项目: 

国家自然科学基金(61422110, 41271011),万人计划青年拔尖人才支持项目,清华大学自主科研项目,清华信息科学与技术国家实验室(筹)拔尖人才支持计划项目

详细信息
    作者简介:

    李刚(1979-),男,2002年和2007年于清华大学电子系分别获得学士、博士学位,现为清华大学电子系研究员、博士生导师,研究方向包括雷达成像、时频分析、稀疏信号处理、分布式信号处理等。E-mail:gangli@tsinghua.edu.cn夏香根(1963-),男,现为美国特拉华大学教授、博士生导师,研究方向包括空时编码、MIMO和OFDM系统、雷达成像等。E-mail:xxia@ee.udel.edu

    通讯作者:

    李刚gangli@tsinghua.edu.cn

Parametric Sparse Representation and Its Applications to Radar Sensing

Funds: 

The National Natural Science Foundation of China (61422110, 41271011), The National Ten Thousand Talent Program-Young Top-Notch Talent Program, The Tsinghua University Initiative Scientific Research Program, The Tsinghua National Laboratory for Information Science and Technology (TNList) Program

  • 摘要: 稀疏信号处理已经在雷达目标探测领域得到应用,并获得了优于传统方法的探测性能。然而,雷达目标探测过程中往往存在目标运动、雷达轨迹误差等未知因素,这导致预先设计的字典矩阵无法实现雷达信号的最优稀疏表征。该文将介绍字典学习的一个分支参数化稀疏表征,该方法通过构建参数化的字典矩阵,实现了对雷达探测过程中未知参数的动态学习和雷达信号的最优稀疏表征。该文还将介绍参数化稀疏表征在逆合成孔径雷达成像、合成孔径雷达自聚焦、基于微多普勒的目标识别等若干雷达探测问题中的应用。

     

  • [1] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, Series B (Methodological), 1996: 267-288.
    [2] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [3] Cands E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    [4] Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
    [5] Eldar Y and Kutyniok G. Compressed Sensing: Theory and Applications[M]. Cambridge University Press, 2012.
    [6] Baraniuk R and Steeghs P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, 2007: 128-133.
    [7] Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
    [8] Ender J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414.
    [9] Zhang B, Hong W, and Wu Y. Sparse microwave imaging: principles and applications[J]. SCIENCE CHINA Information Sciences, 2012, 55(8): 1722-1754.
    [10] 吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展[J]. 雷达学报, 2014, 3(4): 383-395. Wu Yi-rong, Hong Wen, Zhang Bing-chen, et al.. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383-395.
    [11] Hong W, Zhang B, Zhang Z, et al.. Radar imaging with sparse constraint: principle and initial experiment[C]. Proceedings of 10th European Conference on Synthetic Aperture Radar, EUSAR 2014, Berlin, Germany, 2014: 1-4.
    [12] Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
    [13] Dai W and Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.
    [14] Needell D and Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321.
    [15] Li G, Zhang H, Wang X, et al.. ISAR 2-D imaging of uniformly rotating targets via matching pursuit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1838-1846.
    [16] Rao W, Li G, Wang X, et al.. Adaptive sparse recovery by parametric weighted L1 minimization for ISAR imaging of uniformly rotating targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 942-952.
    [17] Rao W, Li G, Wang X, et al.. Comparison of parametric sparse recovery methods for ISAR image formation[J]. SCIENCE CHINA Information Sciences, 2014, 57(2). doi: 10.1007/s11432-013-4859-9.
    [18] Rao W, Li G, Wang X, et al.. Parametric sparse representation method for ISAR imaging of rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 910-919.
    [19] Chen Y, Li G, Zhang Q, et al.. Parametric sparse representation method for air-borne SAR autofocusing. submitted to IEEE Transactions on Geoscience and Remote Sensing.
    [20] Li G and Varshney P K. Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 4937-4948.
    [21] Gaglione D, Clemente C, Coutts F, et al.. Model-based sparse recovery method for automatic classification of helicopters[C]. 2015 IEEE Radar Conference, Arlington, 2015: 1161-1165.
    [22] Alonso M T, Lopez-Dekker P, and Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295.
    [23] Coutts F K, Gaglione D, Clemente C, et al.. Label consistent K-SVD for sparse micro-Doppler classification[C]. 2015 IEEE International Conference on Digital Signal Processing, Singapore, 2015: 90-94.
    [24] Peyre G. Best basis compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2613-2622.
    [25] Zhu H, Leus G, and Giannakis G B. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002-2016.
    [26] Olshausen B A and Field D J. Sparse coding with an overcomplete basis set: a strategy employed by V1?[J]. Vision Research, 1997, 37(23): 3311-3325.
    [27] Kreutz-Delgado K, Murray J F, Rao B D, et al.. Dictionary learning algorithms for sparse representation[J]. Neural Computation, 2003, 15(2): 349-396.
    [28] Bryta O and Elad M. Compression of facial images using the K-SVD algorithm[J]. Journal of Visual Communication and Image Representation, 2008, 19(4): 270-282.
    [29] Tosic I and Frossard P. Dictionary learning[J]. IEEE Signal Processing Magazine, 2011, 28(2): 27-38.
    [30] Donohoe G W. Subaperture autofocus for synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 617-621.
    [31] Wahl D E, Eichel P H, Ghiglia D C, et al.. Phase gradient autofocusa robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835.
  • 期刊类型引用(12)

    1. 田正秋,何思远,蔡志灏,王筱祎. 介质粗糙地面上目标散射中心正向建模与分析. 电波科学学报. 2025(01): 12-20 . 百度学术
    2. 靳明振,杨申,吴中杰,张会强,刘盛启. 基于RANSAC和三维谱峰分析的全姿态散射中心建模. 雷达学报. 2024(02): 471-484 . 本站查看
    3. 罗汝,赵凌君,何奇山,计科峰,匡纲要. SAR图像飞机目标智能检测识别技术研究进展与展望. 雷达学报. 2024(02): 307-330 . 本站查看
    4. 王粲雨,蒋李兵,任笑圆,王壮. 空间目标ISAR图像三维基元表示方法. 雷达学报. 2024(03): 682-695 . 本站查看
    5. 陆睿民,李卫东,王锐,张帆,李沐阳,胡程. 最优字典选择多频段雷达信号宽带融合. 电子与信息学报. 2024(05): 2076-2086 . 百度学术
    6. 李臻,化梦博,杨泽望,刘建,何思远,边志丹. 雷达目标散射中心正向模型扩展及散射特性分析. 电讯技术. 2024(11): 1850-1857 . 百度学术
    7. YIN Hongcheng,YAN Hua. Parametric modeling and applications of target scattering centers: a review. Journal of Systems Engineering and Electronics. 2024(06): 1411-1427 . 必应学术
    8. 孙圣凯,何姿,管灵,董纯柱,樊振宏,丁大志,殷红成. 基于散射中心模型的目标电磁特性智能生成网络研究. 电波科学学报. 2023(05): 835-844 . 百度学术
    9. 魏少明,洪文衍,王俊,耿雪胤,金明明. 基于改进矩阵束的超宽带一维散射中心提取方法. 电子与信息学报. 2022(04): 1231-1240 . 百度学术
    10. 邹嘉玮,何思远,杨泽望,刘建,边志丹. 复杂目标雷达图像形成机理分析. 科学技术与工程. 2022(28): 12468-12475 . 百度学术
    11. 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . 本站查看
    12. 李高源,王晋宇,张长弓,冯博迪,高宇歌,杨海涛. SAR图像仿真方法研究综述. 计算机工程与应用. 2021(15): 62-72 . 百度学术

    其他类型引用(6)

  • 加载中
计量
  • 文章访问数: 2932
  • HTML全文浏览量: 792
  • PDF下载量: 3063
  • 被引次数: 18
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2016-01-06
  • 网络出版日期:  2016-02-28

目录

    /

    返回文章
    返回