扁率摄动对地球同步轨道SAR成像聚焦的影响分析

胡文龙

胡文龙. 扁率摄动对地球同步轨道SAR成像聚焦的影响分析[J]. 雷达学报, 2016, 5(3): 312-319. doi: 10.12000/JR15121
引用本文: 胡文龙. 扁率摄动对地球同步轨道SAR成像聚焦的影响分析[J]. 雷达学报, 2016, 5(3): 312-319. doi: 10.12000/JR15121
Hu Wenlong. Impact of Earth's Oblateness Perturbations on Geosynchronous SAR Data Focusing[J]. Journal of Radars, 2016, 5(3): 312-319. doi: 10.12000/JR15121
Citation: Hu Wenlong. Impact of Earth's Oblateness Perturbations on Geosynchronous SAR Data Focusing[J]. Journal of Radars, 2016, 5(3): 312-319. doi: 10.12000/JR15121

扁率摄动对地球同步轨道SAR成像聚焦的影响分析

doi: 10.12000/JR15121
基金项目: 

国家部委基金

详细信息
    作者简介:

    胡文龙(1963-),男,籍贯安徽,北京航空航天大学博士学位,中国科学院电子学研究所研究员。主要研究方向为雷达信号处理、雷达目标识别、高轨SAR新体制新方法等。E-mail:wlhu@mail.ie.ac.cn

    通讯作者:

    胡文龙wlhu@mail.ie.ac.cn

Impact of Earth's Oblateness Perturbations on Geosynchronous SAR Data Focusing

Funds: 

The National Ministries Foundation

  • 摘要: 针对地球同步轨道星载合成孔径雷达(Geosynchronous Synthetic Aperture Radar, GEOSAR)长合成孔径成像受地球扁率摄动影响的问题,推导了卫星不同轨道根数受摄动所导致的雷达回波多普勒调频率和2次相位公式,通过分析扁率摄动对成像的影响,得到结论:地球扁率摄动使雷达回波产生附加的2次相位调制,相位调制的主导成分是卫星轨道长半轴受摄分量,相位调制幅度与成像所采用的轨道弧段有关,2次相位调制总量经过分钟量级的长合成孔径累积几乎在卫星运动全周期超过45的容限。雷达成像聚焦不能简单忽略扁率摄动的影响,必须采取相应的补偿措施,否则会造成图像散焦。

     

  • [1] Tomiyasu K. Synthetic aperture radar in geosynchronous orbit[C]. IEEE Antennas and Propagation Sympsium, Maryland, USA, 1978:42-45.
    [2] Tomiyasu K and Pacell J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(3):324-329.
    [3] Madsen S N, Edelstein W, DiDomenico L D, et al.. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture[C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Sydney, 2001:447-449.
    [4] Davide B, Hobbs S E, and Giuseppe O. Geosynchronous synthetic aperture radar:concept design, properties and possible applications[J]. Acta Astronautica, 2006, 59(1/5):149-156.
    [5] 朱敏慧. 地球同步轨道星载合成孔径雷达概念研究[J]. 现代雷达, 2011, 33(5):1-4. Zhu Min-hui. The concepts about geosynchronous synthetic aperture radar[J]. Modern Radar, 2011, 33(5):1-4.
    [6] Ruiz-Rodon J, Broquetas A, Makhoul E, et al.. Nearly zero inclination geosynchronous SAR mission analysis with long integration time for earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6379-6391.
    [7] Hobbs S, Mitchell C, Forte B, et al.. System design for geosynchronous synthetic aperture radar missions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12):7750-7763.
    [8] Wu Z, Huang L, Hu D, et al.. Azimuth resolution analysis in geosynchronous SAR with azimuth variance property[J]. Electronics Letters, 2014, 50(6):464-466.
    [9] Hu C, Zeng T, Zhu Y, et al.. The accurate resolution analysis in Geosynchronous SAR[C]. 20108th European Conference on Synthetic Aperture Radar, Aachen, 2010:1-4.
    [10] Wu Z, Huang L, Hu D, et al.. Ground resolution analysis based on gradient method in geosynchronous SAR[C]. 2013 IEEE International Conference on Signal Processing, Communication and Computing, Kunming, 2013:1-4.
    [11] Bruno D, Hobbs S E, et al.. Radar imaging from geosynchronous orbit:temporal decorrelation aspects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7):2924-2929.
    [12] Hu C, Long T, Zeng T, et al.. The accurate focusing and resolution analysis method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3548-3563.
    [13] Zhao B, Qi X, Song H, et al.. An accurate range model based on the fourth-order Doppler parameters for geosynchronous SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):205-209.
    [14] Hu C, Long T, Liu Z, et al.. An improved frequency domain focusing method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5514-5528.
    [15] Tian Y, Hu C, Dong X, et al.. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):721-725.
    [16] Wadge G, Guarnie A M, Hobbs S E, et al.. Potential atmospheric and terrestrial aplications of a geosynchronous radar[C]. 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014:946-949.
    [17] Ruiz Rodon J, Broquetas A, Guarnieri A, et al.. Geosynchronous SAR focusing with atmospheric phase screen retrieval and compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4397-4404.
    [18] Kou L, Xiang M, Wang X, et al.. Tropospheric effects on L-band geosynchronous circular SAR imaging[J]. IET Radar, Sonar Navigation, 2013, 7(6):693-701.
    [19] Jiang Mian, Hu Wen-long, and Ding Chi-biao. The effects of orbital perturbation on geosynchronous synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1106-1110.
    [20] Li F and Johnson W T K. Ambiguities in spaceborne synthetic aperture radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(3):389-396.
    [21] 陈芳允. 卫星测控手册[M]. 北京:科学出版社, 1992:110-137. Chen Fang-yun. A Handbook for Satellite Measurement and Control[M]. Beijing:Science Press, 1992:110-137.
    [22] 刘林. 人造地球卫星轨道力学[M]. 北京:高等教育出版社, 1992:91-193. Liu Lin. Orbital Mechanics of Artificial Satellites[M]. Beijing:Higher Education Press, 1992:91-193.
    [23] Curlander J C and Mcdonough R N. Synthetic Aperture Radar System and Signal Processing[M]. New York:John Wiley Sons Inc., 1991:155-207.
    [24] Cumming I G and Won F H. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation[M]. Norwood MA:Artech House Inc., 2005:567-584.
  • 加载中
计量
  • 文章访问数:  2271
  • HTML全文浏览量:  391
  • PDF下载量:  994
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2016-03-31
  • 网络出版日期:  2016-06-28

目录

    /

    返回文章
    返回