WiFi外辐射源雷达参考信号重构及其对探测性能影响研究

饶云华 明燕珍 林静 朱逢园 万显荣 龚子平

饶云华, 明燕珍, 林静, 朱逢园, 万显荣, 龚子平. WiFi外辐射源雷达参考信号重构及其对探测性能影响研究[J]. 雷达学报, 2016, 5(3): 284-292. doi: 10.12000/JR15108
引用本文: 饶云华, 明燕珍, 林静, 朱逢园, 万显荣, 龚子平. WiFi外辐射源雷达参考信号重构及其对探测性能影响研究[J]. 雷达学报, 2016, 5(3): 284-292. doi: 10.12000/JR15108
Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108
Citation: Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108

WiFi外辐射源雷达参考信号重构及其对探测性能影响研究

DOI: 10.12000/JR15108
基金项目: 

国家自然科学基金(61271400, 41106156)

详细信息
    通讯作者:

    饶云华ryh@whu.edu.cn

Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar

Funds: 

National Natural Science Foundation of China (61271400, 41106156)

  • 摘要: 利用WiFi (Wireless Fidelity)信号作为外辐射源进行探测可获得较好的性能,然而WiFi信号本身及其应用环境的复杂性又决定了其参考信号获取的难度。该文分析了利用WiFi信号进行探测的特点,探讨了参考信号获取的不同方式,针对典型WiFi信号结构,提出了与WiFi无源探测相适应的参考信号重构方法,并结合接收信号的信噪比分析了参考信号重构质量对探测性能的影响。研究表明,参考信道所接收信号的信噪比越高,其解调误比特率越低,重构后的参考信号对于杂波抑制性能越好,其模糊函数噪声基底也越低,越有利于目标探测。同时,针对接收信号中的非监测信号成分所产生的虚假目标重影,提出了基于重构的参考信号修正方法进行消除。仿真分析表明了以上处理方法对参考信号获取的有效性。

     

  • [1] Griffiths H D. New direction in bistatic radar[C]. IEEE RADAR Conference, Rome, 2008: 1-6.
    [2] 万显荣, 易建新, 程丰, 等. 单频网分布式外辐射源雷达技术[J]. 雷达学报, 2014, 3(6): 623-631. Wan Xian-rong, Yi Jian-xin, Cheng Feng, et al.. Single frequency network based distributed passive radar technology[J]. Journal of Radars, 2014, 3(6): 623-631.
    [3] Chen Q, Tan B, Woodbridge K, et al.. Indoor target tracking using high Doppler resolution passive Wi-Fi radar[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, 2015: 5565-5569.
    [4] Falcone P, Colone F, Macera A, et al.. Two-dimensional location of moving targets within local areas using WiFi-based multistatic passive radar[J]. IET Radar, Sonar Navigation, 2014, 8(2): 123-131.
    [5] Colone F, Pastina D, Falcone P, et al.. WiFi-based passive ISAR for high-resolution cross-range profiling of moving targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3486-3501.
    [6] Falcone P, Bongioanni C, and Lombardo P. WiFi-based passive bistatic radar: data processing schemes and experimental results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1061-1079.
    [7] Colone F, Woodbridge K, Guo H, et al.. Ambiguity function analysis of wireless lan transmissions for passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 240-264.
    [8] Chetty K, Smith G E, and Woodbridge K. Through-The-Wall sensing of personnel using passive bistatic WiFi radar at standoff distances[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1218-1226.
    [9] 饶云华, 朱逢园, 张修志, 等. WiFi 外辐射源雷达信号模糊函数及副峰抑制分析[J]. 雷达学报, 2012, 1(3): 225-231. Rao Yun-hua, Zhu Feng-yuan, Zhang Xiu-zhi, et al.. Ambiguity function analysis and side peaks suppression of passive radar[J]. Journal of Radars, 2012, 1(3): 225-231.
    [10] 万显荣, 唐慧, 王俊芳, 等. DTMB外辐射源雷达参考信号纯度对探测性能的影响分析[J]. 系统工程与电子技术, 2013, 35(4): 725-729. WAN Xian-rong, Tang Hui, Wang Jun-fang, et al.. Influence of reference signal purity on target detection performance in DTMB-based passive radar[J]. Systems Engineering and Electronics, 2013, 35(4): 725-729.
    [11] Mazhar H and Hassan S A. Analysis of target multipaths in WiFi-based passive radars[J]. IET Radar, Sonar Navigation, 2016, 10(1): 140-145.
    [12] 吴海洲, 陶然, 单涛. 数字电视辐射源雷达基于空域滤波的直达波获取[J]. 兵工学报, 2009, 30(2): 226-230. Wu Hai-zhou, Tao Ran, and Shan Tao. Direct-path signal obtaining to digital video broadcasting transmitter radar based on the spatial filtering[J]. Acta Armamentarii, 2009, 30(2): 226-230.
    [13] 万显荣, 岑博, 易建新, 等. 中国移动多媒体广播外辐射源雷达参考信号获取方法研究[J]. 电子与信息学报, 2012, 34(2): 338-343. Wan Xian-rong, Cen Bo, Yi Jian-xin, et al.. Reference signal extraction methods for CMMB-based passive bistatic radar[J]. Journal of Electronics Information Technology, 2012, 34(2): 338-343.
    [14] Harms H A, Davis L M, and Palmer J. Understanding the signal structure in DVB-T signals for passive radar detection[C]. IEEE Radar Conference, Washington DC, 2010: 532-537.
    [15] Chetty K, Smith G, Guo H, et al.. Target detection in high clutter using passive bistatic WiFi radar[C]. IEEE Radar Conference, Pasadena, 2009: 1-5.
    [16] IEEE Std 802.11g-2003. Telecommunications and information exchange between systems local and metropolitan area networks specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications-Amendment 4: Furtherhigher-speed physical layer extension in the 2.4 GHz Band[S]. New York: Institue of Electrical and Electronics Engineers, Inc., 2003.
    [17] Nasraoui L, Atallah L N, and Siala M. An efficient reduced-complexity two-stage differential sliding correlation approach for OFDM synchronization in the multipath channel[C]. 2012 IEEE Wireless Communications and Networking Conference (WCNC),Paris,2012: 2059-2063.
  • 加载中
计量
  • 文章访问数:  2904
  • HTML全文浏览量:  686
  • PDF下载量:  1364
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-26
  • 修回日期:  2016-01-26
  • 网络出版日期:  2016-06-28

目录

    /

    返回文章
    返回