基于参数估计的海面运动舰船SAR成像方法

云亚娇 齐向阳 李宁

云亚娇, 齐向阳, 李宁. 基于参数估计的海面运动舰船SAR成像方法[J]. 雷达学报, 2016, 5(3): 326-332. doi: 10.12000/JR15104
引用本文: 云亚娇, 齐向阳, 李宁. 基于参数估计的海面运动舰船SAR成像方法[J]. 雷达学报, 2016, 5(3): 326-332. doi: 10.12000/JR15104
Yun Yajiao, Qi Xiangyang, Li Ning. Moving Ship SAR Imaging Based on Parameter Estimation[J]. Journal of Radars, 2016, 5(3): 326-332. doi: 10.12000/JR15104
Citation: Yun Yajiao, Qi Xiangyang, Li Ning. Moving Ship SAR Imaging Based on Parameter Estimation[J]. Journal of Radars, 2016, 5(3): 326-332. doi: 10.12000/JR15104

基于参数估计的海面运动舰船SAR成像方法

DOI: 10.12000/JR15104
基金项目: 

国家部委基金

详细信息
    作者简介:

    云亚娇(1988–),女,河北保定人,中国科学院电子学研究所信号与信息处理专业硕士研究生,研究方向为海面运动舰船成像。E-mail:yyjiecas@163.com;齐向阳(1974–),男,2001年毕业于中国科学院电子学研究所,获得信号与信息处理专业博士学位,现为中国科学院电子学研究所研究员,研究方向为星载SAR系统仿真、高分辨率成像技术和成像新体制。E-mail:qixy@mail.ie.ac.cn;李宁(1987–),安徽天长人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为合成孔径雷达信号处理。E-mail:lining_nuaa@163.com

    通讯作者:

    云亚娇yyjiecas@163.com

Moving Ship SAR Imaging Based on Parameter Estimation

Funds: 

The National Ministries Foundation

  • 摘要: 运动目标的多普勒参数对常规SAR成像具有一定的影响,该文根据目标的运动参数与多普勒参数的关系,组合并改进相关成像技术,提出了一套SAR运动舰船成像流程。该方法不仅能对单通道信号中的运动目标进行良好的聚焦成像,而且能将其成像在正确的位置。仿真实验和实测数据的成像结果验证了该方法的有效性和正确性。

     

  • [1] Ausherman D A, Kozma A, Walker J L, et al.. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(4): 363-400.
    [2] 张澄波. 综合孔径雷达: 原理、系统分析与应用[M]. 北京: 科学出版社, 1989. Zhang Cheng-bo. Synthetic Aperture Radar: Theory, System Analysis and Application[M]. Beijing: Science Press, 1989.
    [3] Chen V C and Baolun L. Hybird SAR/ISAR for distributed ISAR imaging of moving targerts[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, 2015: 0658-0663.
    [4] Noviellp C, Fomaro G, and Martorella M. Focused SAR image formation of moving targets based on Doppler parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3460-3470.
    [5] Freeman A and Currie A. Synthetic Aperture Radar (SAR) images of moving targets[J]. GEC Journal of Research, 1987, 17(3): 629-635.
    [6] Raney R K. Synthetic aperture imaging radar and moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(3): 499-505.
    [7] Barbarossa S. Detection and imaging of moving objects with synthetic aperture radar Part 1: Optimal detection and parameter estimation theory[J]. IEE Proceedings F Radar and Signal Processing, 1992, 139(1): 79-88.
    [8] Klemm R. Application of Space-time Adaptive Processing[M]. The Institution of Electrical Engineers, 2004.
    [9] Perry R P, DiPietro R C, and Fante R. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188-200.
    [10] 师君, 马龙, 韦顺军, 等. 基于导航数据的Ka波段InSAR成像处理与分析[J]. 雷达学报, 2014, 3(1): 19-27. Shi Jun, Ma Long, Wei Shun-jun, et al.. Ka-band InSAR imaging and analysis based on IMU data[J]. Journal of Radars, 2014, 3(1): 19-27.
    [11] Martorella M, Pastina D, Berizzi F, et al.. Spaceborne radar imaging of maritime moving targets with the Cosmo-SkyMed SAR system[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2797-2810.
    [12] 汪玲, 朱岱寅, 朱兆达. 基于SAR实测数据的舰船成像研究[J]. 电子与信息学报, 2007, 29(2): 401-404. Wang Ling, Zhu Dai-yin, and Zhu Zhao-da. Research on ship imaging based on the real data of SAR[J]. Journal of Electronics Information Technology, 2007, 29(2): 401-404.
    [13] 邢孟道, 保铮. 外场实测数据的舰船目标ISAR成像[J]. 电子与信息学报, 2001, 23(12): 1271-1277. Xing Meng-dao and Bao Zheng. The measured data of ship ISAR imaging[J]. Journal of Electronics Information Technology, 2001, 23(12): 1271-1277.
    [14] Musman S, Kerr D, and Bachmann C. Automatic recognition of ISAR ship images[J]. IEEE Transactions on Aerospace Electronic Systems, 1996, 32(4): 1392-1404.
    [15] Bamler R. Doppler frequency estimation and the Cramer-Rao bound[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(3): 385-390.
    [16] Xue F, Chen Q, and Zhang Y. A Doppler frequency estimation algorithm based on band mismatch[C]. 2014 IEEE International Conference on Orange Technologies (ICOT), Xian, 2014: 77-80.
    [17] 邢孟道, 保铮. 基于运动参数估计的SAR成像[J]. 电子学报, 2001, 29(12A): 1824-1828. Xing Meng-dao and Bao Zheng. SAR imaging motion based on parameter estimation[J]. Acta Electronica Sinica, 2001, 29(12A): 1824-1828.
    [18] Chen C C and Candrews H. Target-Motion-Induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2-14.
    [19] Li X, Liu G, and Ni J. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240-1252.
    [20] Wang J and Liu X. Automatic correction of range migration in SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 256-260.
    [21] Li F K, Held D N, Curlander J C, et al.. Doppler parameter estimation for spaceborne Synthetic-Aperture radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, 23(1): 47-56.
    [22] Moreira J R. A new method of aircraft motion error extraction from radar raw data for real time motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 620-626.
    [23] Wang J and Liu X. SAR Minimum-Entropy autofocus using an Adaptive-Order polynomial model[J]. IEEE Geosciences and Remote Sensing Letters, 2006, 3(4): 512-516.
  • 加载中
计量
  • 文章访问数:  3144
  • HTML全文浏览量:  423
  • PDF下载量:  1629
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-17
  • 修回日期:  2015-11-05
  • 网络出版日期:  2016-06-28

目录

    /

    返回文章
    返回