前视阵FDA-STAP雷达距离模糊杂波抑制方法

许京伟 廖桂生

许京伟, 廖桂生. 前视阵FDA-STAP雷达距离模糊杂波抑制方法[J]. 雷达学报, 2015, 4(4): 386-392. doi: 10.12000/JR15101
引用本文: 许京伟, 廖桂生. 前视阵FDA-STAP雷达距离模糊杂波抑制方法[J]. 雷达学报, 2015, 4(4): 386-392. doi: 10.12000/JR15101
Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101
Citation: Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101

前视阵FDA-STAP雷达距离模糊杂波抑制方法

doi: 10.12000/JR15101
基金项目: 

国家自然科学基金(61231017)

详细信息
    作者简介:

    许京伟(1987-),男,山东日照人,现为西安电子科技大学雷达信号处理国家重点实验室博士后,主要研究方向为空时自适应处理、频率分集阵列信号处理等。E-mail:xujingwei1987@163.com;廖桂生(1963-),男,广西桂林人,现为西安电子科技大学雷达信号处理国家重点实验室教授,博士生导师,国家杰出青年基金获得者,长江学者特聘教授,先后主持和承担国防973项目课题、国家“863”高新技术项目、国防科技预研、国家自然科学基金重点基金等10余项科研任务。现主要从事雷达探测系统信号处理,包括空时自适应处理、天基预警和阵列信号处理等研究领域。E-mail:gsliao@xidian.edu.cn

    通讯作者:

    许京伟xujingwei1987@163.com

Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar

Funds: 

The National Natural Science Foundation of China (61231017)

  • 摘要: 高重复频率前视阵机载雷达地杂波不仅存在严重的距离依赖性,而且存在距离模糊问题,传统空时自适应处理(STAP)方法在距离依赖和距离模糊同时存在时难以有效实现杂波补偿和杂波抑制。针对距离模糊下的机载雷达杂波抑制问题,该文提出一种基于频率分集阵列STAP雷达的距离模糊杂波分离与抑制方法。该方法利用频率分集阵列发射导向矢量的距离角度2维依赖性,通过空间频率域子空间投影实现距离模糊杂波的分离,然后对分离后的杂波分别进行距离依赖补偿,最终实现无模糊区域和模糊区域的杂波抑制和运动目标检测。仿真实验验证了该文方法的有效性。

     

  • [1] Klemm R. Principles of space-time adaptive processing[J]. Electronics Communication Engineering Journal, 2002, 14(6): 295-296.
    [2] Guerci J R. Space-Time Adaptive Processing for Rada[M]. Norwood, MA: Artech House, 2003, Chapter 1-10.
    [3] Klemm R. Comparison between monostatic and bistatic antenna configurations for STAP[J]. IEEE Transactions on Aerospace and Electronic System, 2000, 36(2): 596-608.
    [4] Borsari G. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of the 1998 IEEE Radar Conference, Dallas, 1998: 135-140.
    [5] Kreyenkamp O and Klemm R. Doppler compensation in forward-looking STAP Radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(5): 253-258.
    [6] Himed B, Zhang Y, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radars[C]. Proceedings of the IEEE Radar Conference, Long Beach, 2002: 311-317.
    [7] Melvin W L, Himed B, and Davis M E. Doubly adaptive bistatic clutter filtering[C]. Proceedings of the 2003 IEEE Radar Conference, Hunstville, 2003: 171-178.
    [8] Melvin W L and Davis M E. Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments[J]. IEEE Transactions on Aerospace and Electronic System, 2007, 43(2): 651-672.
    [9] Pearson F and Borsari G. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars[C]. Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory, Lexington, 2001: 13-14.
    [10] Lapierre F D, Ries P, and Verly J G. Foundation for mitigating range dependence in radar space-time adaptive processing[J]. IET Radar, Sonar Navigation, 2009, 3(1): 18-29.
    [11] Ries P, Lapierre F D, and Verly J G. Geometry-induced range-dependence compensation for bistatic STAP with conformal arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 275-294.
    [12] Varadarajan V and Krolik J L. Joint space-time interpolation for distorted linear and bistatic array geometries[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 848-860.
    [13] Hale T B, Temple M A, Raquet J F, et al.. Localized three-dimensional adaptive spatial-temporal processing for airborne radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(1): 18-22.
    [14] Hale T B, Temple M A, and Wicks M C. Clutter suppression using elevation interferometry fused with space-time adaptive processing[J]. Electronic Letters, 2001, 37(12): 793-794.
    [15] Baizert P, Hale T B, Temple M A, et al.. Forward-looking radar GMTI benefits using a linear frequency diverse array[J]. Electronics Letters, 2006, 42(22): 1311-1312.
    [16] 王伟伟, 吴孙勇, 许京伟, 等. 基于频率分集阵列的机载雷达距离模糊杂波抑制方法[J]. 电子与信息学报, 2015, 37(10): 2321-2327.Wang Wei-wei, Wu Sun-yong, Xu Jing-wei, et al.. Range ambiguity clutter suppression for airborne radar based on frequency diverse array[J]. Journal of Electronics Information Technology, 2015, 37(10): 2321-2327.
    [17] Sammartino P F and Backer C J. Developments in the frequency diverse bistatic system[C]. IEEE Radar Conference, Pasadena, 2009: 1-5.
    [18] Sammartino P F, Backer C J, and Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201-222.
    [19] Antonik P, Wicks M C, Griffiths H D, et al.. Multi-mission multi-mode waveform diversity[C]. 2006 IEEE conference on Radar, Verona, NY, 2006, DOI: 10.1109/RADAR. 2006.1631858.
  • 加载中
计量
  • 文章访问数:  2889
  • HTML全文浏览量:  468
  • PDF下载量:  1325
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-02
  • 修回日期:  2015-09-17
  • 网络出版日期:  2015-08-28

目录

    /

    返回文章
    返回