[1] |
Klemm R. Principles of space-time adaptive processing[J]. Electronics Communication Engineering Journal, 2002, 14(6): 295-296.
|
[2] |
Guerci J R. Space-Time Adaptive Processing for Rada[M]. Norwood, MA: Artech House, 2003, Chapter 1-10.
|
[3] |
Klemm R. Comparison between monostatic and bistatic antenna configurations for STAP[J]. IEEE Transactions on Aerospace and Electronic System, 2000, 36(2): 596-608.
|
[4] |
Borsari G. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of the 1998 IEEE Radar Conference, Dallas, 1998: 135-140.
|
[5] |
Kreyenkamp O and Klemm R. Doppler compensation in forward-looking STAP Radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(5): 253-258.
|
[6] |
Himed B, Zhang Y, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radars[C]. Proceedings of the IEEE Radar Conference, Long Beach, 2002: 311-317.
|
[7] |
Melvin W L, Himed B, and Davis M E. Doubly adaptive bistatic clutter filtering[C]. Proceedings of the 2003 IEEE Radar Conference, Hunstville, 2003: 171-178.
|
[8] |
Melvin W L and Davis M E. Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments[J]. IEEE Transactions on Aerospace and Electronic System, 2007, 43(2): 651-672.
|
[9] |
Pearson F and Borsari G. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars[C]. Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory, Lexington, 2001: 13-14.
|
[10] |
Lapierre F D, Ries P, and Verly J G. Foundation for mitigating range dependence in radar space-time adaptive processing[J]. IET Radar, Sonar Navigation, 2009, 3(1): 18-29.
|
[11] |
Ries P, Lapierre F D, and Verly J G. Geometry-induced range-dependence compensation for bistatic STAP with conformal arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 275-294.
|
[12] |
Varadarajan V and Krolik J L. Joint space-time interpolation for distorted linear and bistatic array geometries[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 848-860.
|
[13] |
Hale T B, Temple M A, Raquet J F, et al.. Localized three-dimensional adaptive spatial-temporal processing for airborne radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(1): 18-22.
|
[14] |
Hale T B, Temple M A, and Wicks M C. Clutter suppression using elevation interferometry fused with space-time adaptive processing[J]. Electronic Letters, 2001, 37(12): 793-794.
|
[15] |
Baizert P, Hale T B, Temple M A, et al.. Forward-looking radar GMTI benefits using a linear frequency diverse array[J]. Electronics Letters, 2006, 42(22): 1311-1312.
|
[16] |
王伟伟, 吴孙勇, 许京伟, 等. 基于频率分集阵列的机载雷达距离模糊杂波抑制方法[J]. 电子与信息学报, 2015, 37(10): 2321-2327.Wang Wei-wei, Wu Sun-yong, Xu Jing-wei, et al.. Range ambiguity clutter suppression for airborne radar based on frequency diverse array[J]. Journal of Electronics Information Technology, 2015, 37(10): 2321-2327.
|
[17] |
Sammartino P F and Backer C J. Developments in the frequency diverse bistatic system[C]. IEEE Radar Conference, Pasadena, 2009: 1-5.
|
[18] |
Sammartino P F, Backer C J, and Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201-222.
|
[19] |
Antonik P, Wicks M C, Griffiths H D, et al.. Multi-mission multi-mode waveform diversity[C]. 2006 IEEE conference on Radar, Verona, NY, 2006, DOI: 10.1109/RADAR. 2006.1631858.
|