二维线性与非线性海面的宽带散射特性仿真及分析

王佳宁 许小剑

王佳宁, 许小剑. 二维线性与非线性海面的宽带散射特性仿真及分析[J]. 雷达学报, 2015, 4(3): 343-350. doi: 10.12000/JR15053
引用本文: 王佳宁, 许小剑. 二维线性与非线性海面的宽带散射特性仿真及分析[J]. 雷达学报, 2015, 4(3): 343-350. doi: 10.12000/JR15053
Wang Jia-ning, Xu Xiao-jian. Simulation and Analysis for Wide-band Scattering Characteristics of 2-D Linear and Nonlinear Sea Surfaces[J]. Journal of Radars, 2015, 4(3): 343-350. doi: 10.12000/JR15053
Citation: Wang Jia-ning, Xu Xiao-jian. Simulation and Analysis for Wide-band Scattering Characteristics of 2-D Linear and Nonlinear Sea Surfaces[J]. Journal of Radars, 2015, 4(3): 343-350. doi: 10.12000/JR15053

二维线性与非线性海面的宽带散射特性仿真及分析

doi: 10.12000/JR15053
基金项目: 

国家部委基金资助课题

详细信息
    作者简介:

    王佳宁(1988-),女,籍贯甘肃会宁,现为北京航空航天大学电子信息工程学院博士研究生.主要研究方向为海面电磁散射特性仿真及分析.E-mail:manjiaqw@126.com许小剑(1963-),男,籍贯江西万安,博士,现为北京航空航天大学电子信息工程学院信号与信息处理学科责任教授,博士生导师.主要研究方向为遥感特征建模、分析与处理、雷达成像与目标识别、智能化信息处理等.E-mail:xiaojianxu@buaa.edu.cn

    通讯作者:

    许小剑xiaojianxu@buaa.edu.cn

Simulation and Analysis for Wide-band Scattering Characteristics of 2-D Linear and Nonlinear Sea Surfaces

  • 摘要: 该文基于加权曲率近似方法(Weighted Curvature Approximation, WCA),实现了对2维线性与非线性海面的宽带电磁散射信号的仿真,并通过大量的蒙特卡洛仿真研究了距离高分辨率条件下各距离单元内海杂波统计特性,特别是尖峰特性.研究结果表明,当雷达分辨率提高、雷达入射视线方向由侧风转向逆风、海面风速增加时,海杂波强度概率密度曲线(Probability Density Function, PDF)的长拖尾现象将更加明显.同时,非线性海面的宽带散射回波信号中出现尖峰现象的概率更高.此外,对海杂波统计分布曲线的拟合结果表明,与传统的K分布和Weibull分布相比,Pareto分布在较小擦地角条件下能够更好描述海杂波强度的统计特性.

     

  • [1] Antipov I. Statistical analysis of northern Australia coastline sea clutter data[R]. DSTO-TR-1236, 2001.
    [2] Fuchs J, Regas D, Waseda T, et al.. Correlation of hydrodynamic features with LGA radar backscatter from breaking waves[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2442-2460.
    [3] Ward K D, Baker C J, and Watts S. Maritime surveillance radar part 1: radar scattering from the ocean surface[J]. IEE Proceedings F Radar and Signal Processing, 1990, 137(2): 51-62.
    [4] Nohara T J and Haykin S. Canadian east coast radar trials and the K-distribution[J]. IEE Proceedings F Radar and Signal Processing, 1991, 138(2): 80-88.
    [5] Haykin S, Krasnor C, Nohara T J, et al.. A coherent dualpolarized radar for studying the ocean environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(1): 189-191.
    [6] Toporkov J V and Sletten M A. Statistical properties of low-grazing range-resolved sea surface backscatter generated through two-dimensional direct numerical simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1181-1197.
    [7] Johnson J T, Burkholder R J, Toporkov J V, et al.. A numerical study of the retrieval of sea surface height profiles from low grazing angle radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 1641-1650.
    [8] Chae C S and Johnson J T. A study of sea surface rangeresolved Doppler spectra using numerically simulated lowgrazing- angle backscatter data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3452-3460.
    [9] Tessendorf J. Simulating Ocean Water[R]. Simulating Nature: Realistic and Interactive Techniques, SIGGRAPH 2001 Course Notes 47.
    [10] Creamer D B, Henyey F, Schult R, et al.. Improved linear representation of ocean surface waves[J]. Journal of Fluid Mechanics, 1989, 205: 135-161.
    [11] Soriano G, Joelson M, and Saillard M. Doppler spectra from a two-dimensional ocean surface at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2430-2437.
    [12] Nouguier F, Gurin C A, and Chapron B. Choppy Wave model for nonlinear gravity waves[J]. Journal of Geophysical Research, 2009, 114: 1-16.
    [13] Gurin C A, Soriano G, and Charpon B. The weighted curvature approximation in scattering from sea surfaces[J]. Waves in Random and Complex Media, 2010, 20(3): 364-384.
    [14] Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. Journal of Acoustical Society of America, 1988, 83(1): 78-92.
    [15] Ward K D, Tough R J A, and Watts S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. London, U. K.: The Institution of Engineering and Technology, 2006: 106-129.
    [16] Farshchian M and Posner F L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter[C]. Proceedings of IEEE Radar Conference, 2010: 789-793.
    [17] Chen X, Guan J, Bao Z, et al.. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002-1018.
    [18] Melief H W, Greidanus H, Genderen P, et al.. Analysis of sea spikes in radar sea clutter data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 985-993.
    [19] Greco M, Stinco P, and Gini F. Identification and analysis of sea radar clutter spikes[J]. IET Radar, Sonar Navigation, 2010, 4(2): 239-250.
    [20] Liu L and Frasier S J. Measurement and classification of low grazing angle radar sea spikes[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1): 27-40.
    [21] Moya J C, Menoyo J G, Campo B, et al.. Statistical analysis of a high-resolution sea-clutter database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2024-2037.
  • 加载中
计量
  • 文章访问数:  2239
  • HTML全文浏览量:  394
  • PDF下载量:  1358
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-05
  • 修回日期:  2015-06-23
  • 网络出版日期:  2015-06-28

目录

    /

    返回文章
    返回