基于NCS算子的大斜视SAR压缩感知成像方法

顾福飞 张群 杨秋 霍文俊 王敏

顾福飞, 张群, 杨秋, 霍文俊, 王敏. 基于NCS算子的大斜视SAR压缩感知成像方法[J]. 雷达学报, 2016, 5(1): 16-24. doi: 10.12000/JR15035
引用本文: 顾福飞, 张群, 杨秋, 霍文俊, 王敏. 基于NCS算子的大斜视SAR压缩感知成像方法[J]. 雷达学报, 2016, 5(1): 16-24. doi: 10.12000/JR15035
Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035
Citation: Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035

基于NCS算子的大斜视SAR压缩感知成像方法

doi: 10.12000/JR15035
基金项目: 

国家自然科学基金(61172169)和陕西省西安自然科学基础研究计划项目(2015JM6306)

详细信息
    作者简介:

    顾福飞(1987-),男,江苏淮安人,现为空军工程大学信息与导航学院博士研究生,研究方向为压缩感知理论与雷达成像。E-mail:gffpan@126.com张群(1964-),男,陕西合阳人,现为空军工程大学信息与导航学院教授,博士生导师,IEEESeniorMember,中国电子学会无线电定位技术分会委员,研究方向为雷达成像与目标识别。E-mail:zhangqunnus@gmail.com杨秋(1986-),男,四川广元人,现为空军工程大学信息与导航学院博士研究生,研究方向为雷达与信号处理。

    通讯作者:

    顾福飞gffpan@126.com

Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator

Funds: 

National Natural Science Foundation of China (61172169), Natural Science Foundation of Shaanxi Province (2015JM6306)

  • 摘要: 该文针对大斜视合成孔径雷达(Synthetic Aperture Radar, SAR)成像进行研究,提出了一种基于非线性频调变标(Non-linear Chirp Scaling, NCS)算子的大斜视SAR压缩感知成像方法。首先在详细分析大斜视SAR回波信号模型的基础上,给出了一种基于全采样数据的NCS成像算法,该算法有效完成了回波数据的走动补偿与解耦合处理,实现了准确成像。其次针对降采样的大斜视SAR回波数据成像问题,提出将上述成像算法构造成NCS算子并基于该算子建立压缩感知重构模型,通过对模型的优化求解直接获得最终的成像结果。该方法对于稀疏性成像场景能够有效降低回波数据采样率实现高质量成像,对于非稀疏成像场景在满采样条件下能够提高成像质量。最后的点目标和面目标的仿真实验验证了该文所提方法的有效性和可行性。

     

  • [1] Zhang Lei, Sheng Jia-jian, Xing Meng-dao, et al.. Wavenumber-domain autofocusing for highly squinted UAV SAR imagery[J]. IEEE Sensors Journal, 2012, 12(5): 1574-1588.
    [2] Wong F H, Cumming I G, and Neo Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493-2505.
    [3] 吴勇, 宋红军, 彭靳. 基于时域去走动的SAR大斜视CS成像算法[J]. 电子与信息学报, 2010, 32(3): 593-598. Wu Yong, Song Hong-jun, and Peng Jin. Chirp scaling imaging algorithm of SAR in high squint mode based on range walk removal[J]. Journal of Electronics Information Technology, 2010, 32(3): 593-598.
    [4] An Dao-xiang, Huang Xiao-tao, Jin Tin, et al.. Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3595-3609.
    [5] Wang Kai-zhi and Liu Xing-zhao. Squint mode SAR imaging with range-walk removal[C]. IEEE Acoustics, Speech, and Signal Processing, Philadelphia, USA, 2005: 1113-1116.
    [6] Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [7] Candes E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    [8] Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Seclected Topics in Signal Processing, 2010, 4(2): 244-254.
    [9] Alonso M T, Lopez-Dekker P, and Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295.
    [10] Samadi S, Cetin M, and Madnadi-Shirazi M A. Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar Navigation, 2011, 5(2): 182-193.
    [11] Zhang Bing-chen, Hong Wen, and Wu Yi-rong. Sparse microwave imaging: principles and applications[J]. Science China Information Science, 2012, 55(8): 1722-1754.
    [12] 吴一戎, 洪文, 张冰尘, 等. 稀疏微波雷达成像研究进展(科普类)[J]. 雷达学报, 2014, 3(4): 383-394. Wu Yi-rong, Hong Wen, Zhang Bing-chen, et al.. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383-394.
    [13] Yang Jun-gang, Thompson John, Huang Xiao-tao, et al.. Random-frequency SAR imaging based on Compressed Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983-994.
    [14] Fang Jian, Xu Zong-ben, Zhang Bing-chen, et al.. Fast Compressed Sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 352-363.
    [15] Sun Jin-ping, Zhang Yu-xi, Tian Ji-hua, et al.. A novel spaceborne SAR wide-swath imaging approach based on Poisson disk-like nonuniform sampling and compressive sensing[J]. Science China Information Science, 2012, 55(8): 1876-1887.
    [16] 王威, 占容辉, 欧建平, 等. 改进的基于时域距离走动校正的CS成像算法[J]. 电子与信息学报, 2013, 35(12): 2850-2856. Wang Wei, Zhan Rong-hui, Ou Jian-ping, et al.. Modified chirp scaling imaging algorithm based on range walk removal[J]. Journal of Electronics Information Technology, 2013, 35(12): 2850-2856.
    [17] 石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070-1081. Shi Guang-ming, Liu Dan-hua, Gao Da-hua, et al.. Advances in theory and application of Compressed Sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070-1081.
    [18] Hu L, Shi Z G, Zhou J X, et al.. Compressed sensing of complex sinusoids: an approach based on dictionary refinement[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3809-3822.
    [19] Daubechies I, Defrise M, and De M C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications Pure Applied Mathematics, 2004, 57(11): 1413-1457.
  • 加载中
计量
  • 文章访问数:  1918
  • HTML全文浏览量:  407
  • PDF下载量:  1231
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-20
  • 修回日期:  2015-06-11

目录

    /

    返回文章
    返回