多角度极化SAR图像中的非各向同性散射估计与消除方法研究

李洋 林赟 张晶晶 郭小洋 陈诗强 洪文

李洋, 林赟, 张晶晶, 郭小洋, 陈诗强, 洪文. 多角度极化SAR图像中的非各向同性散射估计与消除方法研究[J]. 雷达学报, 2015, 4(3): 254-264. doi: 10.12000/JR15020
引用本文: 李洋, 林赟, 张晶晶, 郭小洋, 陈诗强, 洪文. 多角度极化SAR图像中的非各向同性散射估计与消除方法研究[J]. 雷达学报, 2015, 4(3): 254-264. doi: 10.12000/JR15020
Li Yang, Lin Yun, Zhang Jing-jing, Guo Xiao-yang, Chen Shi-qiang, Hong Wen. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image[J]. Journal of Radars, 2015, 4(3): 254-264. doi: 10.12000/JR15020
Citation: Li Yang, Lin Yun, Zhang Jing-jing, Guo Xiao-yang, Chen Shi-qiang, Hong Wen. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image[J]. Journal of Radars, 2015, 4(3): 254-264. doi: 10.12000/JR15020

多角度极化SAR图像中的非各向同性散射估计与消除方法研究

doi: 10.12000/JR15020
基金项目: 

国家自然科学基金(61431018)资助课题

详细信息
    作者简介:

    李洋(1983-),男,工程师,博士研究生,研究方向为极化SAR信息处理与应用.林赟(1983-),女,助理研究员,研究方向为雷达信号处理理论与成像算法.张晶晶(1986-),男,博士研究生,研究方向为极化SAR定标、混合极化SAR.郭小洋(1991-),女,博士研究生,研究方向为极化SAR统计建模、混合极化SAR.陈诗强(1990-),男,博士研究生,研究方向为混合极化SAR系统架构优化.洪文(1968-),女,研究员,博士生导师,研究方向为雷达信号处理理论、SAR成像算法、微波遥感图像处理及其应用等.

    通讯作者:

    洪文wendy_iecas@163.com

Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image

  • 摘要: 通过对不同角度子孔径相干累加,多角度观测SAR可以提供高分辨率影像及多角度散射特征.然而,现有的累加成像方法存在非各向同性散射中心混叠问题.混叠将造成极化特征参数估计无法反映实际的目标物理特征,从而难以支撑分类及变化检测应用.为了去除不同散射中心间的相互干扰并利用不同类型的信息,该文提出了一种多角度极化SAR图像中的非各向同性散射估计与消除方法.该方法给出了基于两类目标假设的最大似然比检验统计量,分析了相干斑影响以及非各向同性散射消除机理,证明了恒虚警判决函数的单调性.通过机载P波段极化SAR进行了360观测试验,分析了非各向同性散射消除前后极化熵的变化,验证了算法的有效性并揭示出在目标特征提取方面的应用潜力.

     

  • [1] 洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124-135. Hong Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124-135.
    [2] Lee J S, Grunes M R, Pottier E, et al.. Unsupervised terrain classification preserving polarimetrics catteringcharacteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731.
    [3] Pottier E. Unsupervised classification scheme and topography derivation of PolSAR data based on the H/A/a polarimetric decomposition theorem[C]. Proceedings 4th International Workshop Radar Polarimetry, Nantes, France, 1998: 1-4.
    [4] Falconer D G and Moussally G J. Tomographic imaging of radar data gathered on a circular flight path about a threedimensional target zone[J]. SPIE, 2487: 2-12.
    [5] Soumekh M. Reconnaissance with slant plane circular SAR imaging[J]. IEEE Transactions on Image Processing, 1996, 5(8): 1252-1265.
    [6] Chan T K, Kuga Y, and Ishimaru A. Experimental studies on circular SAR imaging in clutter using angular correlation function technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2192-2197.
    [7] Hubert M. Airborne SAR imaging
    [8] along a circular trajectory[C]. Sixth European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006: 1-4. Oriot H and Cantalloube H. Circular SAR imagery for urban remote sensing[C]. Seventh European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1-4.
    [9] Ponce O, Prats-Iraola P, Pinheiro M, et al.. Fully polarimetric high-resolution 3-D imaging with circular SAR at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3074-3090.
    [10] Lin Y, Hong W, Tan W, et al.. Extension of range migration algorithm to squint circular SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 651-655.
    [11] 张祥坤. 高分辨率圆迹合成孔径雷达成像机理及方法研究[D].[博士论文], 中国科学院空间科学与应用研究中心, 2007. Zhang Xiang-kun. Study on imaging mechanism and algorithm of high-resolution circular SAR[D]. [Ph.D. dissertation], Center for Space Science and Applied Research Chinese Academy of Sciences, 2007.
    [12] 刘燕, 吴元, 孙光才, 等. 圆轨迹SAR快速成像处理[J]. 电子与 信息学报, 2013, 35(4): 852-858. Liu Yan, Wu Yuan, Sun Guang-cai, et al.. Fast imaging processing of circular SAR[J]. Journal of Electronics Information Technology, 2013, 35(4): 852-858.
    [13] Runkle P, Nguyen L, McClellan J, et al.. Multi-aspect target detection for SAR imagery using hidden Markov models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 46-55.
    [14] Ferro-Famil L, Reigber A, Pottier E, et al.. Scene characterization using subaperture polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2264-2276.
    [15] 吴婉澜, 王海江, 皮亦鸣. 基于子孔径分析的极化散射机理研 究[J]. 雷达科学与技术, 2008, 6(4): 273-277. Wu Wan-lan, Wang Hai-jiang, and Pi Yi-ming. Study on polarimetric scattering bechavior based on subaperture analysis[J]. Radar Science and Technology, 2008, 6(4): 273-277.
    [16] Lee J S, Grunes M R, and Kwork R. Classification of multilook polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1994, 15(11): 2299-2311.
    [17] Lopez-Martinez C, Pottier E, and Cloude S. Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2058-2074.
    [18] 王海江, 皮亦鸣, 杨小波. 极化SAR图像中基于子孔径分析的 两种非平稳目标检测[J]. 成都信息工程学院学报, 2012, 27(3): 243-246. Wang Hai-jiang, Pi Yi-ming, and Yang Xiao-bo. Two kinds of nonstationary targets detection in Pol-SAR images based on subaperture analysis[J]. Journal of Chengdu University of Information Technology, 2012, 27(3): 243-246.
    [19] Ulaby F T, Moore R K, and Fung A
    [20] K. Microwave Remote Sensing Active and Passive-Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory[M]. USA: Addison-Wesley Publishing Company Advanced Book Program/World Science Division, 1982: 87-106.
  • 加载中
计量
  • 文章访问数:  2476
  • HTML全文浏览量:  390
  • PDF下载量:  1180
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-30
  • 修回日期:  2015-04-16
  • 网络出版日期:  2015-06-28

目录

    AI智能问答

        /

        返回文章
        返回