多角度极化SAR图像中的非各向同性散射估计与消除方法研究

李洋 林赟 张晶晶 郭小洋 陈诗强 洪文

丁梓航, 谢军伟, 王博. 基于深度学习的FDA-MIMO雷达协方差矩阵缺失数据恢复方法[J]. 雷达学报, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002
引用本文: 李洋, 林赟, 张晶晶, 郭小洋, 陈诗强, 洪文. 多角度极化SAR图像中的非各向同性散射估计与消除方法研究[J]. 雷达学报, 2015, 4(3): 254-264. doi: 10.12000/JR15020
DING Zihang, XIE Junwei, and WANG Bo. Missing covariance matrix recovery with the FDA-MIMO radar using deep learning method[J]. Journal of Radars, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002
Citation: Li Yang, Lin Yun, Zhang Jing-jing, Guo Xiao-yang, Chen Shi-qiang, Hong Wen. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image[J]. Journal of Radars, 2015, 4(3): 254-264. doi: 10.12000/JR15020

多角度极化SAR图像中的非各向同性散射估计与消除方法研究

DOI: 10.12000/JR15020
基金项目: 

国家自然科学基金(61431018)资助课题

详细信息
    作者简介:

    李洋(1983-),男,工程师,博士研究生,研究方向为极化SAR信息处理与应用.林赟(1983-),女,助理研究员,研究方向为雷达信号处理理论与成像算法.张晶晶(1986-),男,博士研究生,研究方向为极化SAR定标、混合极化SAR.郭小洋(1991-),女,博士研究生,研究方向为极化SAR统计建模、混合极化SAR.陈诗强(1990-),男,博士研究生,研究方向为混合极化SAR系统架构优化.洪文(1968-),女,研究员,博士生导师,研究方向为雷达信号处理理论、SAR成像算法、微波遥感图像处理及其应用等.

    通讯作者:

    洪文wendy_iecas@163.com

Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image

  • 摘要: 通过对不同角度子孔径相干累加,多角度观测SAR可以提供高分辨率影像及多角度散射特征.然而,现有的累加成像方法存在非各向同性散射中心混叠问题.混叠将造成极化特征参数估计无法反映实际的目标物理特征,从而难以支撑分类及变化检测应用.为了去除不同散射中心间的相互干扰并利用不同类型的信息,该文提出了一种多角度极化SAR图像中的非各向同性散射估计与消除方法.该方法给出了基于两类目标假设的最大似然比检验统计量,分析了相干斑影响以及非各向同性散射消除机理,证明了恒虚警判决函数的单调性.通过机载P波段极化SAR进行了360观测试验,分析了非各向同性散射消除前后极化熵的变化,验证了算法的有效性并揭示出在目标特征提取方面的应用潜力.

     

  • [1] 洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124-135. Hong Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124-135.
    [2] Lee J S, Grunes M R, Pottier E, et al.. Unsupervised terrain classification preserving polarimetrics catteringcharacteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731.
    [3] Pottier E. Unsupervised classification scheme and topography derivation of PolSAR data based on the H/A/a polarimetric decomposition theorem[C]. Proceedings 4th International Workshop Radar Polarimetry, Nantes, France, 1998: 1-4.
    [4] Falconer D G and Moussally G J. Tomographic imaging of radar data gathered on a circular flight path about a threedimensional target zone[J]. SPIE, 2487: 2-12.
    [5] Soumekh M. Reconnaissance with slant plane circular SAR imaging[J]. IEEE Transactions on Image Processing, 1996, 5(8): 1252-1265.
    [6] Chan T K, Kuga Y, and Ishimaru A. Experimental studies on circular SAR imaging in clutter using angular correlation function technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2192-2197.
    [7] Hubert M. Airborne SAR imaging
    [8] along a circular trajectory[C]. Sixth European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006: 1-4. Oriot H and Cantalloube H. Circular SAR imagery for urban remote sensing[C]. Seventh European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1-4.
    [9] Ponce O, Prats-Iraola P, Pinheiro M, et al.. Fully polarimetric high-resolution 3-D imaging with circular SAR at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3074-3090.
    [10] Lin Y, Hong W, Tan W, et al.. Extension of range migration algorithm to squint circular SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 651-655.
    [11] 张祥坤. 高分辨率圆迹合成孔径雷达成像机理及方法研究[D].[博士论文], 中国科学院空间科学与应用研究中心, 2007. Zhang Xiang-kun. Study on imaging mechanism and algorithm of high-resolution circular SAR[D]. [Ph.D. dissertation], Center for Space Science and Applied Research Chinese Academy of Sciences, 2007.
    [12] 刘燕, 吴元, 孙光才, 等. 圆轨迹SAR快速成像处理[J]. 电子与 信息学报, 2013, 35(4): 852-858. Liu Yan, Wu Yuan, Sun Guang-cai, et al.. Fast imaging processing of circular SAR[J]. Journal of Electronics Information Technology, 2013, 35(4): 852-858.
    [13] Runkle P, Nguyen L, McClellan J, et al.. Multi-aspect target detection for SAR imagery using hidden Markov models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 46-55.
    [14] Ferro-Famil L, Reigber A, Pottier E, et al.. Scene characterization using subaperture polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2264-2276.
    [15] 吴婉澜, 王海江, 皮亦鸣. 基于子孔径分析的极化散射机理研 究[J]. 雷达科学与技术, 2008, 6(4): 273-277. Wu Wan-lan, Wang Hai-jiang, and Pi Yi-ming. Study on polarimetric scattering bechavior based on subaperture analysis[J]. Radar Science and Technology, 2008, 6(4): 273-277.
    [16] Lee J S, Grunes M R, and Kwork R. Classification of multilook polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1994, 15(11): 2299-2311.
    [17] Lopez-Martinez C, Pottier E, and Cloude S. Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2058-2074.
    [18] 王海江, 皮亦鸣, 杨小波. 极化SAR图像中基于子孔径分析的 两种非平稳目标检测[J]. 成都信息工程学院学报, 2012, 27(3): 243-246. Wang Hai-jiang, Pi Yi-ming, and Yang Xiao-bo. Two kinds of nonstationary targets detection in Pol-SAR images based on subaperture analysis[J]. Journal of Chengdu University of Information Technology, 2012, 27(3): 243-246.
    [19] Ulaby F T, Moore R K, and Fung A
    [20] K. Microwave Remote Sensing Active and Passive-Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory[M]. USA: Addison-Wesley Publishing Company Advanced Book Program/World Science Division, 1982: 87-106.
  • 期刊类型引用(23)

    1. 肖敏睿,王巍,尤明懿,陈新. 存在时频统误差条件下的联合时频差定位与观测站航迹优化方法. 信号处理. 2025(01): 150-160 . 百度学术
    2. Xin Yang,Hongming Liu,Xiaoke Wang,Wen Yu,Jingqiu Liu,Sipei Zhang. A Fusion Localization Method Based on Target Measurement Error Feature Complementarity and Its Application. Journal of Beijing Institute of Technology. 2024(01): 75-88 . 必应学术
    3. 任洋,姚金杰,赵昶淳,邹宇,薛晓东. 卫星导航多干扰源直接定位方法. 计算机测量与控制. 2024(04): 159-165+173 . 百度学术
    4. 罗军,张顺生. 联合自适应LASSO与块稀疏贝叶斯直接定位方法. 雷达科学与技术. 2024(03): 265-274 . 百度学术
    5. 万鹏武,李文杰,彭康. 混合信道下基于到达时间的快速直接定位算法. 西安邮电大学学报. 2024(02): 20-26 . 百度学术
    6. Dandan Li,Deyi Wang,Hao Huan. LFM Radar Source Passive Localization Algorithm Based on Range Migration. Journal of Beijing Institute of Technology. 2024(02): 130-140 . 必应学术
    7. 李俊霞,王欣,黄高见,徐勇军,郝万明,朱政宇,李兴旺. 无源定位技术发展及其展望. 无线电工程. 2024(08): 1825-1846 . 百度学术
    8. 陈梁栋,黄知涛,王翔,吴癸周. 基于角速度信息先验的固定无源单站直接定位方法. 电子学报. 2024(07): 2190-2200 . 百度学术
    9. 任洋,姚金杰,赵昶淳. 一种自适应网格细化的卫星干扰源定位方法. 火力与指挥控制. 2024(08): 152-158+165 . 百度学术
    10. 张炜,杨秋,李昊. 一种分布式一体化传感器异步纯方位跟踪管理方法. 指挥控制与仿真. 2024(06): 43-48 . 百度学术
    11. 王雨琦,吴楠,张旭,刘丹,王海强,韩笑冬,仲小清,王宁远. 多星分布式无源相干定位方法. 中国空间科学技术. 2023(01): 63-68 . 百度学术
    12. 陈志坤,翁一鸣,彭冬亮,吴美婵. 基于VEPPSO-EXTRA混合算法的分布式直接定位技术. 电子与信息学报. 2023(02): 664-671 . 百度学术
    13. 罗迪,尹灿斌,李智. 双星对地面未知辐射源直接定位方法研究. 指挥控制与仿真. 2023(01): 136-143 . 百度学术
    14. 刘云天,史鑫磊. 多基站非圆信号直接定位:降维PM与泰勒补偿. 太赫兹科学与电子信息学报. 2023(06): 725-733 . 百度学术
    15. 夏楠,高丹阳,邢宝辉,王亚宁. 基于外辐射源的空中目标直接定位算法. 通信学报. 2023(06): 117-124 . 百度学术
    16. 唐元春,陈端云,夏炳森. 基于传播算子的卫星导航系统干扰源直接定位方法. 太赫兹科学与电子信息学报. 2023(08): 985-991 . 百度学术
    17. 张怡霄,王怀习,姚云龙,常超,康凯. 基于聚类与霍夫变换的同型雷达多目标定位算法. 电讯技术. 2023(12): 1885-1893 . 百度学术
    18. 刘清,谢坚,王伶,王秋红,张兆林. 卫星导航欺骗式干扰源高精度直接定位方法. 电子学报. 2022(05): 1117-1122 . 百度学术
    19. 韦卓. 基于单站干涉仪测向法的未知辐射源定位技术. 舰船电子工程. 2022(07): 159-161 . 百度学术
    20. 王裕旗,孙光才,邢孟道,张子敬. 合成孔径无源定位性能分析与参数设计. 电子与信息学报. 2022(09): 3155-3162 . 百度学术
    21. 刘振,苏晓龙,刘天鹏,彭勃,陈鑫,刘永祥. 基于矩阵差分的远场和近场混合源定位方法. 雷达学报. 2021(03): 432-442 . 本站查看
    22. 金峥嵘,王洁,陈丹彤,赵翼,朱秋明,段洪涛. 基于频谱测绘的辐射源定位. 通信技术. 2021(12): 2644-2649 . 百度学术
    23. 张国鑫,易伟,孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法. 雷达学报. 2021(06): 970-981 . 本站查看

    其他类型引用(22)

  • 加载中
计量
  • 文章访问数: 2550
  • HTML全文浏览量: 385
  • PDF下载量: 1188
  • 被引次数: 45
出版历程
  • 收稿日期:  2015-01-30
  • 修回日期:  2015-04-16
  • 网络出版日期:  2015-06-28

目录

    /

    返回文章
    返回