基于图像强度最优的SAR高精度运动补偿方法

胡克彬 张晓玲 师君 韦顺军

胡克彬, 张晓玲, 师君, 韦顺军. 基于图像强度最优的SAR高精度运动补偿方法[J]. 雷达学报, 2015, 4(1): 60-69. doi: 10.12000/JR15007
引用本文: 胡克彬, 张晓玲, 师君, 韦顺军. 基于图像强度最优的SAR高精度运动补偿方法[J]. 雷达学报, 2015, 4(1): 60-69. doi: 10.12000/JR15007
Hu Ke-bin, Zhang Xiao-ling, Shi Jun, Wei Shun-jun. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization[J]. Journal of Radars, 2015, 4(1): 60-69. doi: 10.12000/JR15007
Citation: Hu Ke-bin, Zhang Xiao-ling, Shi Jun, Wei Shun-jun. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization[J]. Journal of Radars, 2015, 4(1): 60-69. doi: 10.12000/JR15007

基于图像强度最优的SAR高精度运动补偿方法

DOI: 10.12000/JR15007
基金项目: 

国家自然科学基金(61101170),博士点基金(20110185110001)和航空科学基金(20142080007)资助课题

详细信息
    作者简介:

    胡克彬(1988-),男,四川人,目前为电子科技大学工学博士研究生,主要从事高精度SAR成像技术研究。E-mail:kbhu_work@126.com 张晓玲(1964-),女,四川人,获电子科技大学工学博士学位,目前为电子科技大学教授/博士生导师,主要从事SAR成像技术、雷达探测技术研究。E-mail:xlzhang@uestc.edu.cn 师君(1979-),男,河南人,获电子科技大学工学博士学位,目前为电子科技大学副教授,主要从事SAR数据处理方面研究。E-mail:shijun@uestc.edu.cn 韦顺军(1983-),男,广西人,获电子科技大学工学博士学位,目前为电子科技大学讲师,主要从事SAR成像技术、干涉SAR技术研究。E-mail:weishunjun@uestc.edu.cn

A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

  • 摘要: 由于载体平台的不稳定性和测量传感器的精度限制,运动误差成为了提高合成孔径雷达(SAR)成像质量的一个瓶颈。基于图像锐度最优的自聚焦后向投影算法通过估计相位误差进行运动补偿,具有较高精度,但这种方法假设场景中所有像素点相位误差相同,即没有考虑运动误差的空变性,导致大部分像素点仍存在残留误差,造成成像质量下降。针对运动误差空变性的问题,该文提出一种高精度运动补偿方法,该方法在图像强度最大准则下,采用最优化技术估计天线相位中心测量误差,随后利用该测量误差估计量校正天线相位中心并进行后向投影成像。由于估计天线相位中心等效于估计每个像素点的距离历史,因此该方法可以对每个像素点进行高精度相位补偿。点目标仿真和实测数据处理结果均验证了所提方法的有效性。

     

  • [1] Sherwin C W, Ruina J P, and Rawcliffe R D. Some early developments in synthetic aperture radar[J]. IRE Transactions on Military Electronics, 1962, MIL-6(2): 111-115.
    [2] Weib M, Ender H G, and Gierull C H. Foreword to the special issue on scientific and technological progress of synthetic aperture radar (SAR)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4363-4365.
    [3] M J J, Wit De, Meta A, et al.. Modified range-Doppler processing for FM-CW synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 83-87.
    [4] Li Zhong-yu, Wu Jun-jie, Li Wen-chao, et al.. One-stationary bistatic side-looking SAR imaging algorithm based on extended Keystone transforms and nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 211-215.
    [5] Li Zhong-yu, Wu Jun-jie, Yi Qing-ying, et al.. An Omega-k imaging algorithm or translational variant bistatic SAR based on linearization theory[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 627-631.
    [6] Peters T M. Algorithm for fast back- and re-projection in computed tomography[J]. IEEE Transactions on Nulear Science, 1981, 28(4): 3641-3647.
    [7] Shi J, Ma L, and Zhang X L. Streaming BP for non-linear motion compensation SAR imaging based on GPU[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4): 2035-2050.
    [8] Fan Bang-kui, Ding Ze-gang, Gao Wen-bin, et al.. An improved motion compensation method for high resolution UAV SAR imaging[J]. Science China Information Sciences, 2014, 57: 122301-13.
    [9] Ouyang Y, Chong J S, Wu Y R, et al.. Simulation studies of internal waves in SAR images under different SAR and wind field conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1734-1743.
    [10] Ding Z G, Liu L S, Zeng T, et al.. Improved motion compensation approach for squint airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4378-4387.
    [11] Kennedy T A. Strapdown inertial measurement units for motion compensation for synthetic aperture radars[J]. IEEE Aerospace and Electronic Systems Magazine, 1988, 3(10): 32-35.
    [12] Chen Tsung-lin. Design and analysis of a fault-tolerant coplanar gyro-free inertial measurement unit[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 201-212.
    [13] Li Jian-li, Fang Jian-cheng, and Ge Sam Shu-zhi. Kinetics and design of a mechanically dithered ring laser gyroscope position and orientation system[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(1): 210-220.
    [14] Kang C W, Cho N I, and Park C G. Approach to direct coning/sculling error compensation based on the sinusoidal modelling of IMU signal[J]. IET Radar, Sonar Navigation, 2013, 7(5): 527-534.
    [15] Ash J N. An autofocus method for backprjection imagery in synthetic aperture radar[J]. IET Geoscience and Remote Sensing Letters, 2012, 9(1): 104-108.
    [16] Kayanthara K, Rao S, and Sarkar T. Analysis of twodimensional conducting an dielectric bodies utilizing the conjugate gradient method[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(4): 451-453.
    [17] Larry A. Minimization of functions having Lipschitz continuous first partial derivatives[J]. Pacific Journal of Mathematics, 1966, 16(1): 1-3.
    [18] Owens J D, Houston M, Luebke D, et al.. GPU computing[J]. Proceedings of the IEEE, 2008, 96(5): 879-899.
  • 加载中
计量
  • 文章访问数:  3392
  • HTML全文浏览量:  216
  • PDF下载量:  1451
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-16
  • 修回日期:  2015-03-05
  • 网络出版日期:  2015-02-28

目录

    /

    返回文章
    返回