基于变换域稀疏压缩感知的艇载稀疏阵列天线雷达实孔径成像

李烈辰 李道京 黄平平

李烈辰, 李道京, 黄平平. 基于变换域稀疏压缩感知的艇载稀疏阵列天线雷达实孔径成像[J]. 雷达学报, 2016, 5(1): 109-117. doi: 10.12000/JR14159
引用本文: 李烈辰, 李道京, 黄平平. 基于变换域稀疏压缩感知的艇载稀疏阵列天线雷达实孔径成像[J]. 雷达学报, 2016, 5(1): 109-117. doi: 10.12000/JR14159
Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159
Citation: Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159

基于变换域稀疏压缩感知的艇载稀疏阵列天线雷达实孔径成像

doi: 10.12000/JR14159
基金项目: 

国家自然科学基金(61271422, 61201433)

详细信息
    作者简介:

    李烈辰(1988-),男,浙江杭州人,2010年于中国农业大学获得工学学士学位,现为中国科学院电子学研究所博士研究生,研究方向为基于阵列天线的高分辨率雷达成像技术。E-mail:chrislee365@hotmail.com李道京(1964-),男,陕西西安人,研究员,博士生导师,分别于1986年和1991年在南京理工大学获得工学学士和工学硕士学位,2003年于西北工业大学获得工学博士学位,2003年至2006年在中国科学院电子学研究所做博士后研究,主要研究方向为雷达系统和雷达信号处理。E-mail:lidj@mail.ie.ac.cn黄平平(1978-),男,山东海阳人,博士,副教授,2003年于山东理工大学获得工学学士学位,2007年于内蒙古工业大学获得工学硕士学位,2010年获中国科学院电子学研究所博士学位,现任内蒙古工业大学雷达技术研究所所长。主要研究方向为合成孔径雷达信号处理和微波遥感应用。E-mail:cimhwangpp@163.com

    通讯作者:

    李烈辰chrislee365@hotmail.com

Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

Funds: 

The National Natural Science Foundation of China (61271422, 61201433)

  • 摘要: 该文针对飞艇平台,设计了基于组合巴克码的共形稀疏阵列,并对稀疏阵列的探测性能进行了分析。利用飞艇悬停的特点,可对前后不同时刻脉冲的实孔径成像结果进行干涉处理,去除散射单元的随机初相位,使图像在变换域稀疏。引入压缩感知方法,建立回波与变换域系数的关系,完成对地成像,可获得接近满阵阵列成效的图像质量。仿真数据处理结果验证了该方法的有效性。

     

  • [1] Barbier C, Delaur B, and Lavie A. Strategic research agenda for high-altitude aircraft and airship remote sensing applications[C]. USE-High Altitude Aircrafts and Airships Workshop, Antwerp, Belgium, 2006: 44-49.
    [2] 李道京, 侯颖妮, 滕秀敏, 等. 稀疏阵列天线雷达技术及其应用[M]. 北京: 科学出版社, 2014: 9-40. Li Dao-jing, Hou Ying-ni, Teng Xiu-min, et al.. Sparse A r r a y A n t e n n a R a d a r I m a g i n g T e c h n o l o g y a n d Application[M]. Beijing: Science Press, 2014: 9-40.
    [3] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [4] Candes E and Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969-988.
    [5] 滕秀敏, 李道京. 艇载共形稀疏阵列天线雷达成像研究[J]. 电 波科学学报, 2012, 27(4): 644-649, 656.
    [6] Teng Xiu-min and Li Dao-jing. Study on airship conformal sparse array radar imaging[J]. Chinese Journal of Radio Sciences, 2012, 27(4): 644-649, 656. Zhu X X and Bamler R. Superresolving SAR tomography for multidimensional imaging of urban areas: compressive sensing-based TomoSAR inversion[J]. Signal Processing Magazine, 2014, 31(4): 51-58.
    [7] 吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展[J]. 雷达学 报, 2014, 3(4): 383-395. Wu Yi-rong, Hong Wen, Zhang Bing-chen, et al.. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383-395.
    [8] Zhang L, Xing M, Qiu C-W, et al.. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 567-571.
    [9] 李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维 成像[J]. 电子与信息学报, 2014, 36(9): 2166-2172. Li Lie-chen and Li Dao-jing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(9): 2166-2172.
    [10] 杨波. 一种设计组合巴克码脉冲压缩旁瓣抑制滤波器的新方法[J]. 现代雷达, 2001, 23(5): 41-45. Yang Bo. A new method for designing range-sidelobe suppression filter for combined Barker code[J]. Modern Radar, 2001, 23(5): 41-45.
    [11] Li L and Li D. Airship sparse array antenna radar performance analysis[C]. 2013 IEEE International Geoscience Remote Sensing Symposium, Melbourne, Australia, 2013: 628-631.
    [12] Li D, Zhang Q, Li L, et al.. Sparsity analysis of SAR signal and three-dimensional imaging of sparse array SAR[C]. 2013
    [13] IEEE International Geoscience Remote Sensing Symposium, Melbourne, Australia, 2013: 891-894. 张清娟, 李道京. 干涉SAR图像数据压缩[J]. 中国科学院研究 生院学报, 2013, 30(3): 380-386. Zhang Qing-juan and Li Dao-jing. InSAR imaging data compression[J]. Journal of Graduate University of Chinese Academy of Sciences, 2013, 30(3): 380-386.
    [14] Li L, Li D, and Pan Z. InSAR signal sparse sampling and processing based on compressed sensing[C]. 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1041-1044.
    [15] Xu G, Xing M D, Xia X G, et al.. Sparse regularization of interferometric phase and amplitude for InSAR image formation based on Bayesian representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2123-2136.
    [16] Zeng J, Fang J, and Xu Z. Sparse SAR imaging based on L1/2 regularization[J]. SCIENCE CHINA Information Sciences, 2012, 55(8): 1755-1775.
    [17] Zeng J, Xu Z, Zhang B, et al.. Accelerated L1/2 regularization based SAR imaging via BCR and reduced Newton skills[J]. Signal Processing, 2013, 93(7): 1831-1844.
    [18] 辛肖明, 陈琼. m序列优选对及平衡Gold码序列[J]. 北京理工 大学学报, 1990, 10(4): 106-113. Xin Xiao-ming and Chen Qiong. Optimum m-sequence pairs and balanced gold group[J]. Journal of Beijing Institute of Technology, 1990, 10(4): 106-113.
    [19] Kim J H, Younis M, and Moreira A. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 6(3): 568-572.
    [20] Wang W Q. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615-1625.
  • 加载中
计量
  • 文章访问数:  2007
  • HTML全文浏览量:  414
  • PDF下载量:  1753
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-24
  • 修回日期:  2015-04-28

目录

    /

    返回文章
    返回