引用本文: 师君, 张晓玲, 韦顺军, 向高, 杨建宇. 基于变分模型的阵列三维SAR最优DEM重建方法[J]. 雷达学报, 2015, 4(1): 20-28. doi: 10.12000/JR14136
Shi Jun, Zhang Xiao-ling, Wei Shun-jun, Xiang Gao, Yang Jian-yu. An Optimal DEM Reconstruction Method for Linear Array Synthetic Aperture Radar Based on Variational Model[J]. Journal of Radars, 2015, 4(1): 20-28. doi: 10.12000/JR14136
 Citation: Shi Jun, Zhang Xiao-ling, Wei Shun-jun, Xiang Gao, Yang Jian-yu. An Optimal DEM Reconstruction Method for Linear Array Synthetic Aperture Radar Based on Variational Model[J]. Journal of Radars, 2015, 4(1): 20-28. doi: 10.12000/JR14136

## An Optimal DEM Reconstruction Method for Linear Array Synthetic Aperture Radar Based on Variational Model

• 摘要: 由于具备了下视3维成像能力，阵列3维SAR在地形测绘、灾害监测等领域具有广泛的应用前景。但是，载机平台尺寸的限制使得其阵列方向分辨率远远低于距离向和航迹向，严重制约了阵列3维SAR系统整体性能的提升。目前研究主要针对3维SAR图像的稀疏性，采用稀疏重建方法提高其在阵列方向的分辨率。稀疏重建模型在求解过程中丢失了数字高程图(DEM)所具有的单值性、连续性等特征。为了克服稀疏重建模型存在的问题，该文提出了基于变分模型的阵列3维SAR最优DEM重建方法，该方法直接将DEM图作为最优化目标，通过寻找最优化DEM图和对应的散射系数，实现最小二乘意义下的最优DEM重建。仿真结果表明，该方法可以实现各种地形(山区、城市)的稳健DEM增强，其性能远优于OMP算法和正则化方法。

•  [1] Matthias W and Markus G. Initial ARTINO radar experiments[C]. 2010 8th European Conference on Synthetic Aperture Radar (EUSAR), Aachen, Germany, 2010: 1-4. [2] Han Kuo-ye, Wang Yan-ping, Tan Wei-xian, et al.. Efficient pseudopolarformat algorithm for down-looking linear-array SAR 3-D imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 572-576. [3] Peng Xue-ming, Hong Wen, Wang Yan-ping, et al.. Downward looking linear array 3D SAR sparse imaging with wave-front curvature compensation[C]. International Conference on Signal Processing, Communication and Computing (ICSPCC), Kunming, 2013: 1-4. [4] Zhang S, Zhu Y, and Kuang G. Imaging of downward-looking linear array three-dimensional SAR based on FFT-MUSIC[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 885-889. [5] Peng Xue-ming, Hong Wen, Wang Yan-ping, et al.. Polar format imaging algorithm with wave-front curvature phase error compensation for airborne DLSLA three-dimensional SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1-5. [6] Wei Shun-jun, Zhang Xiao-ling, and Shi Jun. Sparse autofocus via bayesian learning iterative maximum and applied for LASAR 3-D imaging[C]. 2014 IEEE Radar Conference, Cincinnat, USA, 2014: 666-669. [7] Zhang Ying-jie, Han Kuo-ye, Wang Yan-ping, et al.. Study on motion compensation for airborne forward looking array SAR by time division multiplexing receiving[C]. 2013 Asia-Pacific Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 2013: 392-395. [8] Zhuge Xiao-dong and Yarovoy A G. A sparse aperture MIMO-SAR-Based UWB imaging system for concealed weapon detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 509-518. [9] Shi Jun, Zhang Xiao-ling, Xiang Gao, et al.. Signal processing for microwave array imaging: TDC and sparse recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4584-4598. [10] Needell D and Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321. [11] Wang Jian, Kwon S, and Shim B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202-6216. [12] Wang Jian and Shim B. On the recovery limit of sparse signals using orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4973-4976. [13] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal Of The Royal Statistical Society Series B-Methodological, 1996, 58(1): 267-288. [14] EfronB, Hastie T, Johnstone I, et al.. Least angle regression[J]. Annals of Statistics, 2004, 32(2): 407-499. [15] Rosset S and Zhu Ji. Piecewise linear regularized solution paths[J]. Annals of Statistics, 2007, 35(3): 1012-1030.

##### 计量
• 文章访问数:  1833
• HTML全文浏览量:  119
• PDF下载量:  1448
• 被引次数: 0
##### 出版历程
• 收稿日期:  2014-11-20
• 修回日期:  2015-01-25

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈