基于相干积累矩阵重构的波达方向估计新方法

李磊 李国林 刘润杰

李磊, 李国林, 刘润杰. 基于相干积累矩阵重构的波达方向估计新方法[J]. 雷达学报, 2015, 4(2): 178-184. doi: 10.12000/JR14116
引用本文: 李磊, 李国林, 刘润杰. 基于相干积累矩阵重构的波达方向估计新方法[J]. 雷达学报, 2015, 4(2): 178-184. doi: 10.12000/JR14116
Li Lei, Li Guo-lin, Liu Run-jie. Novel Direction Of Arrival Estimation Method Based on Coherent Accumulation Matrix Reconstruction[J]. Journal of Radars, 2015, 4(2): 178-184. doi: 10.12000/JR14116
Citation: Li Lei, Li Guo-lin, Liu Run-jie. Novel Direction Of Arrival Estimation Method Based on Coherent Accumulation Matrix Reconstruction[J]. Journal of Radars, 2015, 4(2): 178-184. doi: 10.12000/JR14116

基于相干积累矩阵重构的波达方向估计新方法

DOI: 10.12000/JR14116
基金项目: 

国家自然科学基金(61102165)资助课题

详细信息
    作者简介:

    李磊(1987-),男,山东济宁人,海军航空工程学院在读博士生,研究方向为目标中近程探测、阵列信号处理等。E-mail:lilei19880229@gmail.com 李国林(1955-),男,吉林吉化人,博士生导师,主要研究方向为数字信号处理、近程目标探测、识别与干扰。 刘润杰(1987-),男,黑龙江大庆人,工程师,主要研究方向为雷达信号处理。

Novel Direction Of Arrival Estimation Method Based on Coherent Accumulation Matrix Reconstruction

  • 摘要: 针对短时小样本条件下相干信号的波达方向(Direction Of Arrival, DOA)估计问题,该文提出了一种基于相干积累矩阵重构的快速解相干方法。首先利用相干积累技术对阵列接收快拍进行处理,得到累积快拍矢量,提高了数据信噪比。再依据累积快拍矢量的结构特点构造一个非降维等效协方差矩阵,理论分析可知,该矩阵的秩仅与信源个数相等,与信号间相关性无关,即实现了相干信源完全解相干。相较于空间平滑类算法,该方法避免了阵列孔径损失,估计精度高、计算量小。仿真结果验证了算法的有效性。

     

  • [1] Zheng Z, Li G J, and Teng Y L. Simplified estimation of 2D DOA for coherently distributed sources[J]. Wireless Peronal Communications, 2012, 62(4): 907-922.
    [2] Kassis C E, Picheral J, and Mokbel C. Advantages of nonuniform arrays using root-MUSIC[J]. Signal Processing, 2010, 90(2): 689-695.
    [3] 蒋柏峰, 吕晓德, 向茂生. 基于广义MUSIC 算法的低仰角估 计新方法[J]. 雷达学报, 2013, 2(4): 422-429. Jiang Bai-feng, L Xiao-de, and Xiang Mao-sheng. A new low-elevation estimation method based on a general MUSIC algorithm[J]. Journal of Radars, 2013, 2(4): 422-429.
    [4] Pillai S U and Kwon B H. Forward-backward spatial smoothing techniques for coherent signal identification[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(1): 8-15.
    [5] Williams R T, Prasad S, Mahalanabis A K, et al.. An improved spatial smoothing technique for bearing estimation in a multi path environment[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(4): 425-432.
    [6] Gu J F, Wei P, and Tai H M, 2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix[J]. Signal Processing, 2008, 88(1): 75-85.
    [7] 高书彦, 陈辉, 王永良, 等. 基于均匀圆阵的模式空间矩阵重 构算法[J]. 电子与信息学报, 2007, 29(12): 2832-2835. Gao Shu-yan, Chen Hui, Wang Yong-liang, et al.. The MODE-TOEP algorithm based on uniform circular array[J]. Journal of Electronics Information Technology, 2007, 29(12): 2832-2835.
    [8] Kareem A J, Hyuck M K, and Nizar T. Modified UCA-ESPRIT for estimating DOA of coherent signals using one snapshot[C]. Proceedings of the Vehicular Technology Conference, Singapore, 2008: 126-131.
    [9] 谢菊兰, 李会勇, 何子述. 均匀圆阵相干信源DOA 估计的差 分算法[J]. 电子科技大学学报, 2012, 41(4): 516-521. Xie Ju-lan, Li Hui-yong, and He Zi-shu. DOA estimation of coherent sources using difference algorithm with the uniform circular arrays[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(4): 516-521.
    [10] 袁晓东, 万建伟, 程翥, 等. 基于直接数据域自适应算法的相干 信号DOA 估计[J]. 国防科技大学学报, 2012, 34(3): 131-135. Yuan Xiao-dong, Wan Jian-wei, Cheng Zhe, et al.. DOA estimation of correlated signals based on the adaptive algorithm in direct data domain[J]. Journal of National University of Defense Technology, 2012, 34(3): 131-135.
    [11] 周围, 朱联祥, 周正中, 等. 相干多径环境下信号空间特征及 波达方向估计[J]. 电波科学学报, 2007, 22(4): 685-691. Zhou Wei, Zhu Lian-xiang, Zhou Zheng-zhong, et al.. Estimation of spatial signature and direction of arrivals for signals in coherent multipath environment[J]. Chinese Journal of Radio Science, 2007, 22(4): 685-691.
    [12] 景小荣, 隋伟伟, 周围. 基于四阶累积量和时间平滑的相干信 号DOA 估计[J]. 系统工程与电子技术, 2012, 34(4): 789-795. Jing Xiao-rong, Sui Wei-wei, and Zhou Wei. DOA estimation of coherent signals based on fourth-order cumulant and temporal smoothing[J]. Systems Engineering and Electronics, 2012, 34(4): 789-795.
    [13] 王凌, 李国林, 孟晶, 等. 用一次快拍数据实现二维完全解相 干和解互耦[J]. 系统工程与电子技术, 2012, 34(11): 2208-2214. Wang Ling, Li Guo-Lin, Meng Jing, et al.. Two-dimensional decorrelation and decoupling using single snapshot[J]. Systems Engineering and Electronics, 2012, 34(11): 2208-2214.
    [14] 王凌, 李国林, 谢鑫. 互耦效应下用单快拍数据实现相干信源 完全解相干和解耦合[J]. 电子与信息学报, 2012, 34(10): 2532-2536. Wang Ling, Li Guo-lin, and Xie Xin. Decorrelation and decoupling of coherent signals in the presence of mutual coupling using single snapshot[J]. Journal of Electronics Information Technology, 2012, 34(10): 2532-2536.
    [15] 李涛, 李国林, 徐珩, 等. 采用相干积累矢量平滑实现小样本 信号解相干[J]. 西安电子科技大学学报, 2011, 38(6): 113-116. Li Tao, Li Guo-lin, Xu Heng, et al.. Small sample signals decorrelation using the coherent accumulation vector spatial smoothing[J]. Journal of Xidian University, 2011, 38(6): 113-116.
  • 加载中
计量
  • 文章访问数:  2317
  • HTML全文浏览量:  619
  • PDF下载量:  1734
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-22
  • 修回日期:  2014-11-07
  • 网络出版日期:  2015-04-28

目录

    /

    返回文章
    返回