基于多域联合直达波估计的建筑布局层析成像方法

李念 刘杰 于君明 朱智豪 刘剑光 郭世盛 陈家辉 崔国龙 孔令讲 杨晓波

李念, 刘杰, 于君明, 等. 基于多域联合直达波估计的建筑布局层析成像方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24220
引用本文: 李念, 刘杰, 于君明, 等. 基于多域联合直达波估计的建筑布局层析成像方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24220
LI Nian, LIU Jie, YU Junming, et al. Building layout tomography method based on joint multidomain direct wave estimation[J]. Journal of Radars, in press. doi: 10.12000/JR24220
Citation: LI Nian, LIU Jie, YU Junming, et al. Building layout tomography method based on joint multidomain direct wave estimation[J]. Journal of Radars, in press. doi: 10.12000/JR24220

基于多域联合直达波估计的建筑布局层析成像方法

DOI: 10.12000/JR24220
基金项目: 国家自然科学基金(62401098, 62371110)
详细信息
    作者简介:

    李念,博士生,主要研究方向为穿墙雷达成像和射频无线电层析成像

    刘杰,研究员,主要研究方向为航天测控与卫星应用

    于君明,研究员,主要研究方向为SAR成像处理及遥感应用

    朱智豪,博士生,主要研究方向为阵列信号处理与非直视目标探测技术

    刘剑光,高工,主要研究方向为计算机软件应用

    郭世盛,博士,研究员,主要研究方向为城市环境目标探测、基于雷达的人体行为识别等

    陈家辉,博士,师资博士后,主要研究方向为雷达非直视隐蔽探测

    崔国龙,博士,教授,主要研究方向为最优化理论和算法、雷达目标检测理论、波形多样性以及城市环境目标探测等

    孔令讲,博士,教授,主要研究方向为新体制雷达、统计信号处理、优化理论和算法、雷达信号处理、非合作信号处理技术和自适应阵列信号处理及城市环境目标探测等

    杨晓波,教授,主要研究方向为雷达隐蔽探测与成像、太赫兹雷达等

    通讯作者:

    陈家辉 chenjiahui@uestc.edu.cn

  • 责任主编:杨小鹏 Corresponding Editor: YANG Xiaopeng
  • 中图分类号: TN957.52

Building Layout Tomography Method Based on Joint Multidomain Direct Wave Estimation

Funds: The National Natural Science Foundation of China (62401098, 62371110)
More Information
  • 摘要: 在进入陌生建筑物之前掌握其内部结构信息,能够为反恐作战、灾害救援、监视管控等多种应用提供支持,具有重要的现实意义和研究价值。为实现建筑布局结构信息获取,该文开展了基于多域联合直达波估计的建筑布局层析成像方法研究。首先,建立了线性近似模型,实现了直达波信号传播时延与未知建筑布局图像之间的映射关系;在此模型基础上,分析了在层析成像模式下直达波信号与多径信号在快时间域、慢时间域与多普勒域中的分布特性,提出了一种基于多域联合的直达波估计算法,实现了多径干扰抑制与直达波信号精确估计;此外,提出了一种总变分约束的投影矩阵自适应修正代数重建算法,提升了有限数据下的建筑布局反演质量;最后,电磁仿真与实测实验结果证明了所提出的建筑布局层析成像方法的有效性,其重建结果的结构相似性指标分别可达到91.2%和81.7%,显著优于现有建筑布局层析成像方法。

     

  • 图  1  射频层析成像示意图

    Figure  1.  Schematic diagram of RTI

    图  2  线性层析投影模型示意图

    Figure  2.  Schematic diagram of linear tomographic projection model

    图  3  直达波与多径信号对比示意图

    Figure  3.  Comparison diagram of propagation time between direct wave and multipath propagation

    图  4  第96个采样点脉冲压缩结果

    Figure  4.  The 96th sampling point pulse compression result

    图  5  第91~101个采样点R-D谱结果

    Figure  5.  R-D spectrum results of sampling points 91th~101th

    图  6  多径抑制结果

    Figure  6.  Multipath suppression results

    图  7  仿真场景图

    Figure  7.  Simulation scene diagram

    图  8  0°路径观测数据估计结果

    Figure  8.  Observation data estimation results of 0 ° path

    图  9  仿真场景重建结果

    Figure  9.  Simulation scene reconstruction results

    图  10  合成孔径成像结果

    Figure  10.  Synthetic aperture imaging results

    图  11  –10 dB~10 dB信噪比下不同方法重建结果对比

    Figure  11.  Comparison of reconstruction results using different methods at SNR ranging from –10 dB to 10 dB

    图  12  实测场景图

    Figure  12.  Actual scene diagram

    图  13  实测场景重建结果

    Figure  13.  Real scene reconstruction results

    表  1  PMAM-ART-TV算法流程

    Table  1.   PMAM-ART-TV algorithm Flow

     输入: P, A,初始化$ {\boldsymbol{O}}=0 $,外部停止标准${\varepsilon _o}$,内部停止标准
     ${\varepsilon _i}$,外部迭代次数$t = 0$,外部最大迭代次数$ {T_o} $,内部最大迭代
     次数${T_i}$
     输出: $ \tilde{{\boldsymbol{O}}}={\boldsymbol{O}}^{t} $
     repeat
     1、代数重建迭代:
       $k = 0$
       求解式(16)、式(17)更新$ \Delta C_{}^{k + 1} $
       求解式(18)更新$ {\boldsymbol{O}}_n^{k + 1} $
       $ k = k + 1 $
       直到$k = {T_i}$或者$ \Vert {{\boldsymbol{O}}}^{k+1}-{{\boldsymbol{O}}}^{k}\Vert \le {\varepsilon }_{i} $,输出$ {{{\boldsymbol{O}}}_{ART}} $
     2、总变分约束迭代:
       $k = 0$,$ {{\boldsymbol{O}}} = {{{\boldsymbol{O}}}_{ART}} $, $ {{{\boldsymbol{u}}}^k} = 0 $
       求解式(23)更新$ {{{\boldsymbol{u}}}^{k + 1}} $
       求解式(24)更新${{\boldsymbol{b}}}_x^{k + 1}$, ${{\boldsymbol{b}}}_y^{k + 1}$
       求解式(25)更新$ {{\boldsymbol{d}}}_x^{k + 1} $, $ {{\boldsymbol{d}}}_y^{k + 1} $
       $ {{\boldsymbol{O}}} = {{{\boldsymbol{u}}}^{k + 1}} $, $ k = k + 1 $
       直到$k = {T_i}$或者$ \Vert {{\boldsymbol{O}}}^{k+1}-{{\boldsymbol{O}}}^{k}\Vert \le {\varepsilon }_{i} $,输出O
     3、更新投影矩阵
       求解式(28)更新A, $ {{{\boldsymbol{O}}}^{t + 1}} $, $t = t + 1$
     until直到$t = {T_o}$或者$ \Vert {{\boldsymbol{O}}}^{t+1}-{{\boldsymbol{O}}}^{t}\Vert \le {\varepsilon }_{o} $
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Simulation parameters

    类型仿真参数数值
    信号参数发射信号步进频信号
    中心频率1.5 GHz
    带宽600 MHz
    单频点持续时间100 us
    扫描参数采样路径长度10 m
    采样路径数目4组
    采样间隔0.05 m
    场景参数场景尺寸2 m×2 m
    墙体厚度0.20 m
    相对介电常数4
    电导率0.01 S/m
    下载: 导出CSV

    表  3  观测数据误差对比

    Table  3.   Comparison of observation data errors

    观测数据RMSE
    RSSI[15]0.367
    MAE[18]0.219
    MD-DE0.138
    下载: 导出CSV

    表  4  仿真成像结果SSIM指标对比

    Table  4.   Comparison of SSIM indicators in simulation imaging results

    ARTTikhonovTVPMAM-ART-TV
    RSSI30.8%28.7%48.9%68.5%
    MAE34.1%51.4%72.8%86.2%
    MD-DE40.6%58.9%88.9%91.2%
    下载: 导出CSV

    表  5  雷达系统参数

    Table  5.   Radar system parameters

    参数名称数值
    中心频率1.9 GHz
    带宽600 MHz
    频率步进2 MHz
    频点持续时间100 μs
    下载: 导出CSV

    表  6  实测成像结果SSIM指标对比

    Table  6.   Comparison of SSIM indicators in actual imaging results

    ARTTikhonovTVPMAM-ART-TV
    RSSI31.4%30.6%31.2%31.7%
    MAE43.9%49.8%73.6%75.5%
    MD-DE46.3%56.6%78.6%81.7%
    下载: 导出CSV
  • [1] 金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2021, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [2] AHMAD F and AMIN M G. Noncoherent approach to through-the-wall radar localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1405–1419. doi: 10.1109/TAES.2006.314581.
    [3] 崔国龙. 超宽带穿墙雷达合成孔径成像算法研究与实现[D]. [硕士论文], 电子科技大学, 2008: 6–16.

    CUI Guolong. Research and implementation of synthetic aperture imaging algorithm for ultra-wideband through-the-wall radar[D]. [Master dissertation], University of Electronic Science and Technology of China, 2008: 6–16.
    [4] NKWARI P K M, SINHA S, and FERREIRA H C. Through-the-wall radar imaging: A review[J]. IETE Technical Review, 2018, 35(6): 631–639. doi: 10.1080/02564602.2017.1364146.
    [5] GUO Shisheng, CUI Guolong, KONG Lingjiang, et al. An imaging dictionary based multipath suppression algorithm for through-wall radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 269–283. doi: 10.1109/TAES.2017.2756298.
    [6] CHEN Jiahui, GUO Shisheng, LUO Haolan, et al. Non-line-of-sight multi-target localization algorithm for driver-assistance radar system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5332–5337. doi: 10.1109/TVT.2022.3227971.
    [7] CHEN Jiahui, LI Nian, GUO Shisheng, et al. Enhanced 3-D building layout tomographic imaging via tensor approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5105614. doi: 10.1109/TGRS.2024.3391282.
    [8] LI Nian, CHEN Jiahui, GUO Shisheng, et al. Building layout tomographic imaging based on MIMO-UWB radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5108713. doi: 10.1109/TGRS.2024.3435831.
    [9] NGUYEN L, RESSLER M, and SICHINA J. Sensing through the wall imaging using the Army Research Lab ultra-wideband synchronous impulse reconstruction (UWB SIRE) radar[C]. SPIE 6947, Radar Sensor Technology XII, Orlando, USA, 2008: 69470B. doi: 10.1117/12.776869.
    [10] LE C, DOGARU T, NGUYEN L, et al. Ultrawideband (UWB) radar imaging of building interior: Measurements and predictions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1409–1420. doi: 10.1109/TGRS.2009.2016653.
    [11] 金添, 宋勇平. 超宽带雷达建筑物结构稀疏成像[J]. 雷达学报, 2018, 7(3): 275–284. doi: 10.12000/JR18031.

    JIN Tian and SONG Yongping. Sparse imaging of building layouts in ultra-wideband radar[J]. Journal of Radars, 2018, 7(3): 275–284. doi: 10.12000/JR18031.
    [12] ZHANG Yang, CHEN Jiahui, GUO Shisheng, et al. Building layout tomographic reconstruction via commercial WiFi signals[J]. IEEE Internet of Things Journal, 2021, 8(20): 15500–15511. doi: 10.1109/JIOT.2021.3073912.
    [13] MOSTOFI Y. Cooperative wireless-based obstacle/object mapping and see-through capabilities in robotic networks[J]. IEEE Transactions on Mobile Computing, 2013, 12(5): 817–829. doi: 10.1109/TMC.2012.32.
    [14] DEPATLA S, BUCKLAND L, and MOSTOFI Y. X-Ray vision with only WiFi power measurements using Rytov wave models[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1376–1387. doi: 10.1109/TVT.2015.2397446.
    [15] DEPATLA S, KARANAM C R, and MOSTOFI Y. Robotic through-wall imaging: Radio-frequency imaging possibilities with unmanned vehicles[J]. IEEE Antennas and Propagation Magazine, 2017, 59(5): 47–60. doi: 10.1109/MAP.2017.2731302.
    [16] KARANAM C R and MOSTOFI Y. 3D through-wall imaging with unmanned aerial vehicles using WiFi[C]. The 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, Pittsburgh, USA, 2017: 131–142. doi: 10.1145/3055031.3055084.
    [17] 张扬. 建筑布局结构透视微波层析成像理论与方法[D]. [博士论文], 电子科技大学, 2022: 20–82.

    ZHANG Yang. Theory and method of perspective microwave tomography of building layout structure[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2022: 20–82.
    [18] GUO Qichang, LI Yanlei, LIANG Xingdong, et al. A novel CT-mode through-the-wall imaging method based on time delay estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(8): 1381–1385. doi: 10.1109/LGRS.2020.3000423.
    [19] CHEN Jiahui, ZHANG Yang, LI Huquan, et al. Ultrawideband tomographic imaging in multipath-rich environment[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8016305. doi: 10.1109/LGRS.2021.30961830.
    [20] YASWANTH K, BHATTACHARYA S, and KHANKHOJE U K. Algebraic reconstruction techniques for inverse imaging[C]. 2016 International Conference on Electromagnetics in Advanced Applications, Cairns, Australia, 2016: 756–759. doi: 10.1109/ICEAA.2016.7731509.
    [21] ANDREU F, CASELLES V, DÍAZ J I, et al. Some qualitative properties for the total variation flow[J]. Journal of Functional Analysis, 2002, 188(2): 516–547. doi: 10.1006/jfan.2001.3829.
    [22] LI Nian, ZHAN Yang, CHEN Jiahui, et al. Building layout tomographic imaging method with sparse scan angles[C]. The 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 2128–2132. doi: 10.1109/ICCC56324.2022.10066042.
    [23] GOLDSTEIN T and OSHER S. The split bregman method for l1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323–343. doi: 10.1137/080725891.
    [24] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076.
    [25] WARREN C, GIANNOPOULOS A, and GIANNAKIS I. GprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020.
    [26] HAMILTON B R, MA Xiaoli, BAXLEY R J, et al. Radio frequency tomography in mobile networks[C]. 2012 IEEE Statistical Signal Processing Workshop, Ann Arbor, USA, 2012: 508–511. doi: 10.1109/SSP.2012.6319745.
    [27] CHEN Jiahui, GUO Shisheng, CUI Guolong, et al. Building layout reconstruction with transmissive and reflective signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5116612. doi: 10.1109/TGRS.2022.3199270.
    [28] ZHAO Jifang, JIN Liangnian, and LIU Qinghua. Through-the-wall radar sparse imaging for building walls[J]. The Journal of Engineering, 2019, 2019(21): 7403–7405. doi: 10.1049/joe.2019.0541.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-06

目录

    /

    返回文章
    返回