非理想检测下多雷达网络节点选择与辐射资源联合优化分配算法

时晨光 唐志诚 周建江 严俊坤 王子微

时晨光, 唐志诚, 周建江, 等. 非理想检测下多雷达网络节点选择与辐射资源联合优化分配算法[J]. 雷达学报(中英文), 2024, 13(3): 565–583. doi: 10.12000/JR23081
引用本文: 时晨光, 唐志诚, 周建江, 等. 非理想检测下多雷达网络节点选择与辐射资源联合优化分配算法[J]. 雷达学报(中英文), 2024, 13(3): 565–583. doi: 10.12000/JR23081
SHI Chenguang, TANG Zhicheng, ZHOU Jianjiang, et al. Joint collaborative radar selection and transmit resource allocation in multiple distributed radar networks with imperfect detection performance[J]. Journal of Radars, 2024, 13(3): 565–583. doi: 10.12000/JR23081
Citation: SHI Chenguang, TANG Zhicheng, ZHOU Jianjiang, et al. Joint collaborative radar selection and transmit resource allocation in multiple distributed radar networks with imperfect detection performance[J]. Journal of Radars, 2024, 13(3): 565–583. doi: 10.12000/JR23081

非理想检测下多雷达网络节点选择与辐射资源联合优化分配算法

DOI: 10.12000/JR23081
基金项目: 国家自然科学基金(62271247),国防基础科研计划资助项目(JCKY2021210B004),南京航空航天大学前瞻布局科研专项资金,江淮前沿技术协同创新中心追梦基金课题资助(2023-ZM01D001)
详细信息
    作者简介:

    时晨光,博士,副教授,主要研究方向为飞行器射频隐身技术、网络化雷达资源管理等

    唐志诚,硕士生,主要研究方向为飞行器射频隐身技术

    周建江,博士,教授,主要研究方向为飞行器射频隐身技术、雷达目标特性分析、航空电子信息技术等

    严俊坤,博士,教授,主要研究方向为认知雷达、目标跟踪与定位、协同探测等

    王子微,博士,工程师,主要研究方向为雷达信号处理、目标跟踪等

    通讯作者:

    时晨光 scg_space@163.com

  • 责任主编:易伟 Corresponding Editor: YI Wei
  • 中图分类号: TN957

Joint Collaborative Radar Selection and Transmit Resource Allocation in Multiple Distributed Radar Networks with Imperfect Detection Performance

Funds: The National Natural Science Foundation of China (62271247), The Defense Industrial Technology Development Program (JCKY2021210B004), The Prospective Layout of Scientific Research Special Funds of Nanjing University of Aeronautics and Astronautics, Dreams Foundation of Jianghuai Advance Technology Center (2023-ZM01D001)
More Information
  • 摘要: 该文针对分布式相控阵多雷达网络的多目标跟踪场景,研究非理想检测条件下的节点选择与辐射资源联合优化分配算法。首先,根据分布式相控阵多雷达网络构成、目标运动模型、雷达量测模型以及雷达节点检测情况,推导非理想检测下以雷达节点选择、辐射功率和信号带宽为变量的贝叶斯克拉默-拉奥下界(BCRLB)闭式解析表达式,并以此作为多目标跟踪精度衡量指标。在此基础上,以最小化系统各雷达节点对所有目标的总辐射功率为优化目标,以满足目标跟踪精度门限以及给定的系统射频辐射资源限制为约束条件,建立非理想检测条件下多雷达网络节点选择与辐射资源联合优化分配模型,对各时刻雷达节点选择、辐射功率和信号带宽等参数进行联合优化设计,以提升多雷达网络的射频隐身性能。最后,针对上述非线性、非凸优化问题,采用基于障碍函数法和循环最小化算法的4步分解算法进行求解。仿真结果表明,与现有算法相比,所提算法能在满足给定多目标跟踪精度的条件下有效降低分布式相控阵多雷达网络的总辐射功率,至少降低了约32.3%,从而提升其射频隐身性能。

     

  • 图  1  多雷达网络多目标跟踪工作步骤

    Figure  1.  The working steps for multitarget tracking of multiple radar networks

    图  2  基于本文所提算法的多雷达网络多目标跟踪闭环过程

    Figure  2.  The closed-loop process of proposed algorithm for multitarget tracking in multiple radar networks

    图  3  仿真场景1多雷达网络分布与目标运动轨迹

    Figure  3.  Deployment of multiple radar networks and trajectories of moving targets in scenario 1

    图  4  仿真场景1目标1的雷达节点选择与辐射资源优化分配结果

    Figure  4.  Radar node selection and transmit resource optimization results of target 1 in scenario 1

    图  5  仿真场景1目标2的雷达节点选择与辐射资源优化分配结果

    Figure  5.  Radar node selection and transmit resource optimization results of target 2 in scenario 1

    图  6  不同检测概率下的各目标BCRLB与跟踪精度阈值对比

    Figure  6.  The comparison between the BCRLB of targets and the specified tracking accuracy threshold

    图  7  仿真场景1不同检测概率下各目标ARMSE对比结果

    Figure  7.  Comparison of the ARMSE of targets with different values of probability of detection in scenario 1

    图  8  仿真场景1不同检测概率下总辐射功率消耗对比结果

    Figure  8.  Comparison of the total power consumption with different values of probability of detection in scenario 1

    图  9  仿真场景2中的目标RCS起伏模型

    Figure  9.  Target RCS undulation model in scenario 2

    图  10  仿真场景2目标1的雷达节点选择与辐射资源优化分配结果

    Figure  10.  Radar node selection and transmit resource optimization results of target 1 in scenario 2

    图  11  仿真场景2目标2的雷达节点选择与辐射资源优化分配结果

    Figure  11.  Radar node selection and transmit resource optimization results of target 2 in scenario 2

    图  12  仿真场景2不同检测概率下各目标ARMSE对比结果

    Figure  12.  Comparison of the ARMSE of targets with different values of probability of detection in scenario 2

    图  13  仿真场景2不同检测概率下总辐射功率消耗对比结果

    Figure  13.  Comparison of the total power consumption with different values of probability of detection in scenario 2

    图  14  仿真场景3多雷达网络分布与目标运动轨迹

    Figure  14.  Deployment of multiple radar networks and trajectories of moving targets in scenario 3

    图  15  仿真场景3目标1的雷达节点选择与辐射资源优化分配结果

    Figure  15.  Radar node selection and transmit resource optimization results of target 1 in scenario 3

    图  16  仿真场景3目标2的雷达节点选择与辐射资源优化分配结果

    Figure  16.  Radar node selection and transmit resource optimization results of target 2 in scenario 3

    图  17  仿真场景3不同检测概率下各目标ARMSE对比结果

    Figure  17.  Comparison of the ARMSE of targets with different values of probability of detection in scenario 3

    图  18  仿真场景3不同检测概率下总辐射功率消耗对比结果

    Figure  18.  Comparison of the total power consumption with different values of probability of detection in scenario 3

    图  19  仿真场景4目标1的雷达节点选择与辐射资源优化分配结果

    Figure  19.  Radar node selection and transmit resource optimization results of target 1 in scenario 4

    图  20  仿真场景4目标2的雷达节点选择与辐射资源优化分配结果

    Figure  20.  Radar node selection and transmit resource optimization results of target 2 in scenario 4

    图  21  仿真场景4不同检测概率下各目标ARMSE对比结果

    Figure  21.  Comparison of the ARMSE of targets with different values of probability of detection in scenario 4

    图  22  仿真场景4不同检测概率下总辐射功率消耗对比结果

    Figure  22.  Comparison of the total power consumption with different values of probability of detection in scenario 4

    图  23  不同场景下本文所提算法与穷举法的计算耗时对比

    Figure  23.  Comparison of computational time consumption between the proposed algorithm and the exhaustive method in different scenarios

    1  非理想检测下基于障碍函数法的雷达节点选择算法

    1.   Radar node selection algorithm based on barrier function method with imperfect detection

     输入:令$ {g_1} = {\kern 1pt} \mathbb{F}\left( {{\boldsymbol{\mu }}_k^q,{\boldsymbol{\hat P}}_{{\text{t}},k}^q,{\boldsymbol{\hat \beta }}_k^q} \right) - {\eta ^q} $, $ {g_2} = {\kern 1pt} - \mu _{1,1,k}^q $,
     $ {g_3} = {\kern 1pt} - \mu _{2,1,k}^q $, ···, $ {g_{{N_1} + 1}} = {\kern 1pt} - \mu _{{N_1},1,k}^q $, ···,
     $ {g_{\sum\limits_{m = 1}^M {{N_m}} + 1}} = {\kern 1pt} - \mu _{{N_M},M,k}^q $, $ {g_{\sum\limits_{m = 1}^M {{N_m}} + 2}} = {\kern 1pt} \mu _{1,1,k}^q - 1 $,
     $ {g_{\sum\limits_{m = 1}^M {{N_m}} + 3}} = {\kern 1pt} \mu _{2,1,k}^q - 1 $, ···, $ {g_{2\sum\limits_{m = 1}^M {{N_m}} + 1}} = {\kern 1pt} \mu _{{N_M},M,k}^q - 1 $,
     设置迭代索引$ \varphi = 1 $;设置可行域$ D = \left\{ {\mu _{n,m,k}^q\left| {{g_a}\left( {\mu _{n,m,k}^q} \right) \le 0,a = 1,2, \cdots ,2\displaystyle\sum\limits_{m = 1}^M {{N_m}} + 1} \right.} \right\} $,
     其中$ {g_a}\left( {\mu _{n,m,k}^q} \right) = {g_a} $;设置$ \varepsilon \gt 0 $为算法终止指标,$ {\xi ^{\left( \varphi \right)}} \gt 0 $,
     $ e \ge 2 $。
     步骤1:取$ {\left( {\mu _{n,m,k}^q} \right)^{\left( {\varphi - 1} \right)}} \in D $为初始点;
     步骤2:求解如下问题:
     $\begin{gathered} \min {\kern 1pt} {\mathbb{G}_1} - {\xi ^{\left( \varphi \right)} }\left[ {\frac{1}{ { {g_1} } } + \frac{1}{ { {g_2} } } + \cdots + \frac{1}{ { {g_{2 \sum\limits_{m = 1}^M { {N_m} } + 1} } } } } \right], \\ {\text{s} }{\text{.t} }{\text{.} }{\kern 1pt} {\kern 1pt} {\kern 1pt} \mu _{n,m,k}^q \in D. \\ \end{gathered}$
     式中,${\mathbb{G}_1}$表示优化模型(23)中的目标函数;
     步骤3:令上述问题的极小值点为$ {\left( {\mu _{n,m,k}^q} \right)^{\left( \varphi \right)}} $;
     步骤4:检验终止条件,若
     $ - {\xi ^{\left( \varphi \right)}}\left[ {\dfrac{1}{{{g_1}}} + \dfrac{1}{{{g_2}}} + , \cdots , + \dfrac{1}{{{g_{2\sum\limits_{m = 1}^M {{N_m}} + 1}}}}} \right] \lt \varepsilon $,算法终止;若
     未满足终止条件,令${\left( {\mu _{n,m,k}^q} \right)^{\left( {\varphi + 1} \right)} } \leftarrow \dfrac{ { { {\left( {\mu _{n,m,k}^q} \right)}^{\left( \varphi \right)} } } }{e}$,
     $ \varphi \leftarrow \varphi + 1 $。
     输出:雷达节点最优选择结果。
    下载: 导出CSV
  • [1] HAIMOVICH A M, BLUM R S, and CIMIN L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. doi: 10.1109/MSP.2008.4408448.
    [2] GODRICH H, PETROPULU A P, and POOR H V. Power allocation strategies for target localization in distributed multiple-radar architectures[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226–3240. doi: 10.1109/TSP.2011.2144976.
    [3] CHAVALI P and NEHORAI A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715–729. doi: 10.1109/TSP.2011.2174989.
    [4] XIE Mingchi, YI Wei, KONG Lingjiang, et al. Receive-beam resource allocation for multiple target tracking with distributed MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2421–2436. doi: 10.1109/TAES.2018.2818579.
    [5] ZHANG Haowei, ZONG Binfeng, and XIE Junwei. Power and bandwidth allocation for multi-target tracking in collocated MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9795–9806. doi: 10.1109/TVT.2020.3002899.
    [6] 易伟, 袁野, 刘光宏, 等. 多雷达协同探测技术研究进展:认知跟踪与资源调度算法[J]. 雷达学报, 2023, 12(3): 471–499. doi: 10.12000/JR23036.

    YI Wei, YUAN Ye, LIU Guanghong, et al. Recent advances in multi-radar collaborative surveillance: Cognitive tracking and resource scheduling algorithms[J]. Journal of Radars, 2023, 12(3): 471–499. doi: 10.12000/JR23036.
    [7] ZHANG Weiwei, SHI Chenguang, SALOUS S, et al. Convex optimization-based power allocation strategies for target localization in distributed hybrid non-coherent active-passive radar networks[J]. IEEE Transactions on Signal Processing, 2022, 70: 2476–2488. doi: 10.1109/TSP.2022.3173756.
    [8] XIE Mingchi, YI Wei, KIRUBARAJAN T, et al. Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 729–743. doi: 10.1109/TSP.2017.2777394.
    [9] ZHANG Haowei, LIU Weijian, XIE Junwei, et al. Joint subarray selection and power allocation for cognitive target tracking in large-scale MIMO radar networks[J]. IEEE Systems Journal, 2020, 14(2): 2569–2580. doi: 10.1109/JSYST.2019.2960401.
    [10] YI Wei, YUAN Ye, HOSEINNEZHAD R, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602–1617. doi: 10.1109/TSP.2020.2976587.
    [11] SUN Hao, LI Ming, ZUO Lei, et al. Joint radar scheduling and beampattern design for multitarget tracking in netted colocated MIMO radar systems[J]. IEEE Signal Processing Letters, 2021, 28: 1863–1867. doi: 10.1109/LSP.2021.3108675.
    [12] YAN Junkun, DAI Jinhui, PU Wenqiang, et al. Target capacity based resource optimization for multiple target tracking in radar network[J]. IEEE Transactions on Signal Processing, 2021, 69: 2410–2421. doi: 10.1109/TSP.2021.3071173.
    [13] ZHANG Haowei, LIU Weijian, ZHANG Zhaojian, et al. Joint target assignment and power allocation in multiple distributed MIMO radar networks[J]. IEEE Systems Journal, 2021, 15(1): 694–704. doi: 10.1109/JSYST.2020.2986020.
    [14] SUN Hao, LI Ming, ZUO Lei, et al. Resource allocation for multitarget tracking and data reduction in radar network with sensor location uncertainty[J]. IEEE Transactions on Signal Processing, 2021, 69: 4843–4858. doi: 10.1109/TSP.2021.3101018.
    [15] AJORLOO A, AMINI A, and BASTANI M H. A compressive sensing-based colocated MIMO radar power allocation and waveform design[J]. IEEE Sensors Journal, 2018, 18(22): 9420–9429. doi: 10.1109/JSEN.2018.2871214.
    [16] DU Yi, LIAO Kefei, OUYANG Shan, et al. Time and aperture resource allocation strategy for multitarget ISAR imaging in a radar network[J]. IEEE Sensors Journal, 2020, 20(6): 3196–3206. doi: 10.1109/JSEN.2019.2954711.
    [17] WANG Dan, ZHANG Qun, LUO Ying, et al. Joint optimization of time and aperture resource allocation strategy for multi-target ISAR imaging in radar sensor network[J]. IEEE Sensors Journal, 2021, 21(17): 19570–19581. doi: 10.1109/JSEN.2021.3090053.
    [18] SUN Hao, LI Ming, ZUO Lei, et al. JPBA of ARN for target tracking in clutter[J]. IET Radar,Sonar &Navigation, 2019, 13(11): 2024–2033. doi: 10.1049/iet-rsn.2019.0038.
    [19] DAI Jinhui, YAN Junkun, LV Jindong, et al. Composed resource optimization for multitarget tracking in active and passive radar network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5119215. doi: 10.1109/TGRS.2022.3215228.
    [20] ZHANG Haowei, LIU Weijian, SHI Junpeng, et al. Joint detection threshold optimization and illumination time allocation strategy for cognitive tracking in a networked radar system[J]. IEEE Transactions on Signal Processing, 2022, 70: 5833–5847. doi: 10.1109/TSP.2022.3188205.
    [21] LI Zhengjie, XIE Junwei, LIU Weijian, et al. Joint strategy of power and bandwidth allocation for multiple maneuvering target tracking in cognitive MIMO radar with collocated antennas[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 190–204. doi: 10.1109/TVT.2022.3204939.
    [22] YAN Junkun, PU Wenqiang, ZHOU Shenghua, et al. Collaborative detection and power allocation framework for target tracking in multiple radar system[J]. Information Fusion, 2020, 55: 173–183. doi: 10.1016/j.inffus.2019.08.010.
    [23] LI Xi, CHENG Ting, SU Yang, et al. Joint time-space resource allocation and waveform selection for the collocated MIMO radar in multiple targets tracking[J]. Signal Processing, 2020, 176: 107650. doi: 10.1016/j.sigpro.2020.107650.
    [24] ZHANG Haowei, LIU Weijian, ZONG Binfeng, et al. An efficient power allocation strategy for maneuvering target tracking in cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 1591–1602. doi: 10.1109/TSP.2020.3047227.
    [25] ZUO Lei, HU Juan, SUN Hao, et al. Resource allocation for target tracking in multiple radar architectures over lossy networks[J]. Signal Processing, 2023, 208: 108973. doi: 10.1016/J.SIGPRO.2023.108973.
    [26] SUN Hao, LI Ming, ZUO Lei, et al. Joint threshold optimization and power allocation of cognitive radar network for target tracking in clutter[J]. Signal Processing, 2020, 172: 107566. doi: 10.1016/j.sigpro.2020.107566.
    [27] LAWRENCE D E. Low probability of intercept antenna array beamforming[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(9): 2858–2865. doi: 10.1109/TAP.2010.2052573.
    [28] GOVONI M A, LI Hongbin, and KOSINSKI J A. Low probability of interception of an advanced noise radar waveform with linear-FM[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1351–1356. doi: 10.1109/TAES.2013.6494419.
    [29] ZHANG Zhenkai and TIAN Yubo. A novel resource scheduling method of netted radars based on Markov decision process during target tracking in clutter[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 16. doi: 10.1186/s13634-016-0309-3.
    [30] SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1316–1330. doi: 10.1109/TSP.2017.2770086.
    [31] ZHOU Chengwei, GU Yujie, HE Shibo, et al. A robust and efficient algorithm for coprime array adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1099–1112. doi: 10.1109/TVT.2017.2704610.
    [32] SHI Chenguang, DING Lintao, WANG Fei, et al. Low probability of intercept-based collaborative power and bandwidth allocation strategy for multi-target tracking in distributed radar network system[J]. IEEE Sensors Journal, 2020, 20(12): 6367–6377. doi: 10.1109/JSEN.2020.2977328.
    [33] YUAN Ye, YI Wei, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2021, 69: 443–458. doi: 10.1109/TSP.2020.3047519.
    [34] SHI Chenguang, WANG Yijie, SALOUS S, et al. Joint transmit resource management and waveform selection strategy for target tracking in distributed phased array radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2762–2778. doi: 10.1109/TAES.2021.3138869.
    [35] SU Yang, CHENG Ting, HE Zishu, et al. Joint waveform control and resource optimization for maneuvering targets tracking in netted colocated MIMO radar systems[J]. IEEE Systems Journal, 2022, 16(3): 3960–3971. doi: 10.1109/JSYST.2021.3098622.
    [36] YAN Junkun, DAI Jinhui, PU Wenqiang, et al. Quality of service constrained-resource allocation scheme for multiple target tracking in radar sensor network[J]. IEEE Systems Journal, 2021, 15(1): 771–779. doi: 10.1109/JSYST.2020.2990409.
    [37] SHI Yuchun, JIU Bo, YAN Junkun, et al. Data-driven simultaneous multibeam power allocation: When multiple targets tracking meets deep reinforcement learning[J]. IEEE Systems Journal, 2021, 15(1): 1264–1274. doi: 10.1109/JSYST.2020.2984774.
    [38] DELIGIANNIS A, PANOUI A, LAMBOTHARAN S, et al. Game-theoretic power allocation and the Nash equilibrium analysis for a multistatic MIMO radar network[J]. IEEE Transactions on Signal Processing, 2017, 65(24): 6397–6408. doi: 10.1109/TSP.2017.2755591.
    [39] YAN Junkun, PU Wenqiang, ZHOU Shenghua, et al. Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks[J]. IEEE Transactions on Signal Processing, 2020, 68: 4055–4068. doi: 10.1109/TSP.2020.3007313.
    [40] YAN Junkun, PU Wenqiang, LIU Hongwei, et al. Robust chance constrained power allocation scheme for multiple target localization in colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2018, 66(15): 3946–3957. doi: 10.1109/TSP.2018.2841865.
    [41] SHI Chenguang, DING Lintao, WANG Fei, et al. Joint target assignment and resource optimization framework for multitarget tracking in phased array radar network[J]. IEEE Systems Journal, 2021, 15(3): 4379–4390. doi: 10.1109/JSYST.2020.3025867.
    [42] ZHANG Weiwei, SHI Chenguang, and ZHOU Jianjiang. Power minimization-based joint resource allocation algorithm for target localization in noncoherent distributed MIMO radar system[J]. IEEE Systems Journal, 2022, 16(2): 2183–2194. doi: 10.1109/JSYST.2021.3126152.
    [43] FARINA A, RISTIC B, and TIMMONERI L. Cramér-Rao bound for nonlinear filtering with Pd<1 and its application to target tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(8): 1916–1924. doi: 10.1109/TSP.2002.800411.
    [44] ANASTASIO V, FARINA A, COLONE F, et al. Cramér-Rao lower bound with Pd<1 for target localisation accuracy in multistatic passive radar[J]. IET Radar,Sonar &Navigation, 2014, 8(7): 767–775. doi: 10.1049/iet-rsn.2013.0213.
    [45] SUN Jun, LU Xiujuan, YUAN Ye, et al. Resource allocation for multi-target tracking in multi-static radar systems with imperfect detection performance[C]. 2020 IEEE Radar Conference, Florence Italy, 2020.
    [46] SHI Chenguang, SHI Zhao, TANG Zhicheng, et al. Joint Radar Selection and Resource Allocation for Multi-target Tracking in Multiple Radar Networks with Non-ideal Detection Performance[M]. FU Wenxing, GU Mancang, and NIU Yifeng. Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022). Singapore: Springer, 2023: 82–89.
    [47] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [48] YAN Junkun, LIU Hongwei, JIU Bo, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3110–3122. doi: 10.1109/TSP.2015.2417504.
    [49] STOICA P and SELEN Y. Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: A refresher[J]. IEEE Signal Processing Magazine, 2004, 21(1): 112–114. doi: 10.1109/MSP.2004.1267055.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  763
  • HTML全文浏览量:  226
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 修回日期:  2023-07-14
  • 网络出版日期:  2023-08-01
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回