一种用于海洋要素反演的机载SAR多普勒中心偏移计算方法

赵现斌 严卫 艾未华 陆文 马烁

赵现斌, 严卫, 艾未华, 等. 一种用于海洋要素反演的机载SAR多普勒中心偏移计算方法[J]. 雷达学报, 2019, 8(3): 391–399. doi: 10.12000/JR19020
引用本文: 赵现斌, 严卫, 艾未华, 等. 一种用于海洋要素反演的机载SAR多普勒中心偏移计算方法[J]. 雷达学报, 2019, 8(3): 391–399. doi: 10.12000/JR19020
ZHAO Xianbin, YAN Wei, AI Weihua, et al. Research on calculation method of Doppler centroid shift from airborne synthetic aperture radar for ocean feature retrieval[J]. Journal of Radars, 2019, 8(3): 391–399. doi: 10.12000/JR19020
Citation: ZHAO Xianbin, YAN Wei, AI Weihua, et al. Research on calculation method of Doppler centroid shift from airborne synthetic aperture radar for ocean feature retrieval[J]. Journal of Radars, 2019, 8(3): 391–399. doi: 10.12000/JR19020

一种用于海洋要素反演的机载SAR多普勒中心偏移计算方法

DOI: 10.12000/JR19020
基金项目: 国家自然科学基金(41575028, 41705007, 41605016),湖南省自然科学基金(2019JJ50719),国防科技大学科研计划项目(ZK17-03-51)
详细信息
    作者简介:

    赵现斌(1986–),男,陕西合阳人,博士,讲师。2015年在解放军理工大学气象海洋学院获得博士学位,主要从事海洋遥感等方面的研究

    严 卫(1961–),男,浙江宁波人,1997年在南京航空航天大学获博士学位,目前国防科技大学气象海洋学院教授,博导

    艾未华(1979–),男,江西鹰潭人,原解放军理工大学博士,国防科技大学气象海洋学院副教授、硕士生导师,主要研究方向为气象海洋环境感知雷达技术。E-mail: awhzjax@126.com

    陆 文(1984–),男,2012年毕业于解放军理工大学气象海洋学院,获得大气物理学与大气环境理学博士学位,现为国防科技大学气象海洋学院副教授。主要研究方向为微波主被动大气海洋环境遥感。E-mail: luwenft@hotmail.com

    马 烁(1989–),男,安徽人,博士,助理研究员。2016年在解放军理工大学气象海洋学院获得博士学位,主要研究方向为大气与海洋遥感及其资料同化等。E-mail: mashuo0601@163.com

    通讯作者:

    赵现斌 xian854591504@126.com

  • 中图分类号: TP751.1; P738

Research on Calculation Method of Doppler Centroid Shift from Airborne Synthetic Aperture Radar for Ocean Feature Retrieval

Funds: The National Natural Science Foundation of China (41575028, 41705007, 41605016), Hunan Natural Science Foundation (2019JJ50719), The National University of Defense Technology Research Project (ZK17-03-51)
More Information
  • 摘要: 多普勒中心偏移是合成孔径雷达(SAR)反演海面风场、海表流场的重要参数。该文针对机载正侧视提出一种多普勒中心偏移计算方法,分别利用载机运动状态数据和海洋探测回波数据计算多普勒中心频率,再作差求解多普勒中心偏移,并在多普勒谱分析中加入小波分析去除噪声的影响来提高计算精度。以CDOP经验模型计算结果作为比对真值,机载SAR飞行探测试验结果表明,9组探测数据多普勒中心偏移计算误差的绝对值均小于2 Hz,均方根误差为1.4 Hz,满足海洋环境要素反演的精度要求。实验表明高精度的平台运动状态数据和探测回波数据是多普勒中心偏移海洋应用的关键。

     

  • 图  1  搭载平台航向和天线指向构成的探测几何关系

    Figure  1.  Sounding geometric relationship between the platform and antenna pointing heading

    图  2  机载SAR姿态变化时构成的探测几何关系

    Figure  2.  Sounding geometric relationship in airborne SAR posture change

    图  3  多普勒中心偏移计算方法验证方案

    Figure  3.  Doppler centroid shift calculation method verification scheme

    图  4  探测数据20120726-011的姿态信息

    Figure  4.  Attitude information of the probe data 20120726-011

    图  5  机载SAR探测回波数据计算多普勒中心频率

    Figure  5.  The Doppler center frequency calculate from Airborne SAR detection echo data

    图  6  多普勒中心偏移计算误差与风速误差对应关系

    Figure  6.  Correspondence between Doppler centroid shift calculation error and wind speed error

    表  1  惯导参数测量误差对多普勒中心频率计算精度的影响

    Table  1.   The influence of inertial parameter measurement error to Doppler center frequency calculation accuracy

    惯导参数测量误差多普勒中心频率误差(Hz)
    俯仰角0.1°2.0
    偏航角0.1°1.8
    飞行速度1 m/s1.0
    飞行高度//
    下载: 导出CSV

    表  2  机载SAR工作参数及指标

    Table  2.   Operating parameters and indicators of airborne SAR

    工作参数指 标
    工作模式条带
    极化方式HH, HV, VH, VV
    雷达频率5.3 GHz
    雷达波长0.056 m
    信号带宽80 MHz, 150 MHz
    脉冲宽度15 μs
    PRF500 Hz
    下载: 导出CSV

    表  3  多普勒中心偏移计算结果比对验证(Hz)

    Table  3.   Comparison of Doppler centroid shift calculation verification (Hz)

    条带名称回波数据惯导数据探测数据CDOP模型计算误差
    20120726-01161.546.215.314.50.8
    20120726-02153.761.1–7.4–9.21.8
    20120726-03127.336.8–9.5–10.81.3
    20120726-04147.928.919.019.6–0.6
    20120726-05110.718.6–7.9–6.7–1.2
    20120726-06166.447.419.017.41.6
    20120726-071–13.7–3.5–10.2–11.41.2
    20120726-081–15.6–31.215.617.3–1.7
    20120726-09131.310.121.219.61.6
    RMS1.4
    下载: 导出CSV
  • [1] MARTIN S. An Introduction to Ocean Remote Sensing[M]. 2nd ed. Cambridge: Cambridge University Press, 2014: 15–27.
    [2] HASSELMANN S, BRÜNING C, HASSELMANN K, et al. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra[J]. Journal of Geophysical Research: Oceans, 1996, 101(C7): 16615–16629. doi: 10.1029/96JC00798
    [3] HERSBACH H, STOFFELEN A, and DE HAAN S. An improved C-band scatterometer ocean geophysical model function: CMOD5[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03006. doi: 10.1029/2006JC003743
    [4] 张杰, 张晰, 范陈清, 等. 极化SAR在海洋探测中的应用与探讨[J]. 雷达学报, 2016, 5(6): 596–606. doi: 10.12000/JR16124

    ZHANG Jie, ZHANG Xi, FAN Chenqing, et al. Discussion on application of polarimetric synthetic aperture radar in marine surveillance[J]. Journal of Radars, 2016, 5(6): 596–606. doi: 10.12000/JR16124
    [5] 王绍清. 星载SAR多普勒中心实时估计技术研究[D]. [硕士论文], 中国科学院研究生院(电子学研究所), 2005: 12–17.

    WANG Shaoqing. Research on the Doppler centroid real-time estimation technology of space-borne SAR[D]. [Master dissertation], Chinese Academy of Sciences Institute of Electronics, 2005: 12–17.
    [6] MOUCHE A A, COLLARD F, CHAPRON B, et al. On the use of Doppler shift for sea surface wind retrieval from SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2901–2909. doi: 10.1109/TGRS.2011.2174998
    [7] CHAPRON B, COLLARD F, and ARDHUIN F. Direct measurements of ocean surface velocity from space: Interpretation and validation[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07008. doi: 10.1029/2004JC002809
    [8] ROUAULT M J, MOUCHE A, COLLARD F, et al. Mapping the Agulhas Current from space: An assessment of ASAR surface current velocities[J]. Journal of Geophysical Research: Oceans, 2010, 115(C10): C10026. doi: 10.1029/2009JC006050
    [9] RANEY R K. Doppler properties of radars in circular orbits[J]. International Journal of Remote Sensing, 1986, 7(9): 1153–1162. doi: 10.1080/01431168608948916
    [10] BEZVESILNIY O O and VAVRIV D M. Synthetic Aperture Radar Systems for Small Aircrafts: Data Processing Approaches[M]. London: INTECH Open Access Publisher, 2012: 465–498.
    [11] HERLAND E A. Seasat SAR processing at the Norwegian defence research establishment[C]. Proceedings of an EALSel-ESA Symposium, Voss, Norway, 1981: 247–253.
    [12] MCDONOUGH R N, RAFF B E, and KERR J L. Image formation from spaceborne synthetic aperture radar signals[J]. Johns Hopkins APL Technical Digest, 1985, 6(4): 300–312.
    [13] BENNETT J R, CUMMING I G, and DEANE R A. The digital processing of seasat synthetic aperture radar data[C]. IEEE International Radar Conference, Washington, USA, 1980: 168–175.
    [14] LI F K, HELD D N, CURLANDER J C, et al. Doppler parameter estimation for spaceborne synthetic-aperture radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-2(1): 47–56. doi: 10.1109/TGRS.1985.289499
    [15] CURLANDER J C, WU C, and PANG A. Automated preprocessing of spaceborne SAR data[C]. Proceedings of 1982 International Geoscience and Remote Sensing Symposium, Munich, Germany, 1982: 6.
    [16] HANSEN M W, COLLARD F, DAGESTAD K F, et al. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3582–3592. doi: 10.1109/TGRS.2011.2153864
    [17] 闫龙. 机载SAR多普勒参数估计及运动补偿技术研究[D]. [硕士学位论文], 哈尔滨工程大学, 2009: 10–20.

    YAN Long. Research on Doppler parameters estimation and motion compensation of air-born SAR[D]. [Master dissertation], Harbin Engineering University, 2009: 10–20.
    [18] ROMEISER R and THOMPSON D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 446–458. doi: 10.1109/36.823940
    [19] 刘银中. 机载SAR实测数据多普勒参数估计与成像算法研究[D]. [硕士学位论文], 哈尔滨工业大学, 2006: 12–18.

    LIU Yinzhong. Study on Doppler parameters estimation of airborne SAR raw data and imaging algorithms[D]. [Master dissertation], Harbin Institute of Technology, 2006: 12–18.
    [20] LEITE G C, USHIZIMA D M, MEDEIROS F N S, et al. Wavelet analysis for wind fields estimation[J]. Sensors, 2010, 10(6): 5994–6016. doi: 10.3390/s100605994
    [21] 郝胜勇, 王小青, 盛新庆, 等. 一种提高海洋SAR定位精度的方法[J]. 电子与信息学报, 2005, 27(8): 1213–1216.

    HAO Shengyong, WANG Xiaoqing, SHENG Xinqing, et al. A means of improving accuracy of positioning for ocean SAR[J]. Journal of Electronics &Information Technology, 2005, 27(8): 1213–1216.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  2911
  • HTML全文浏览量:  813
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-13
  • 修回日期:  2019-05-27
  • 网络出版日期:  2019-06-01

目录

    /

    返回文章
    返回