基于太赫兹雷达的声致海面微动信号检测

邓彬 李韬 汤斌 易俊 王宏强 杨琪

邓彬, 李韬, 汤斌, 等. 基于太赫兹雷达的声致海面微动信号检测[J]. 雷达学报, 2023, 12(4): 817–831. doi: 10.12000/JR23117
引用本文: 邓彬, 李韬, 汤斌, 等. 基于太赫兹雷达的声致海面微动信号检测[J]. 雷达学报, 2023, 12(4): 817–831. doi: 10.12000/JR23117
DENG Bin, LI Tao, TANG Bin, et al. Feature detection of acoustically induced sea surface micro-motions with Terahertz radar[J]. Journal of Radars, 2023, 12(4): 817–831. doi: 10.12000/JR23117
Citation: DENG Bin, LI Tao, TANG Bin, et al. Feature detection of acoustically induced sea surface micro-motions with Terahertz radar[J]. Journal of Radars, 2023, 12(4): 817–831. doi: 10.12000/JR23117

基于太赫兹雷达的声致海面微动信号检测

DOI: 10.12000/JR23117
基金项目: 国家自然科学基金(61921001, 61971427, 62035014, 62201591)
详细信息
    作者简介:

    邓 彬,副研究员,主要研究方向为合成孔径雷达、太赫兹雷达微动与成像等

    李 韬,硕士生,主要研究方向为雷达信号处理

    汤 斌,博士生,主要研究方向为太赫兹雷达微动特征提取、太赫兹雷达ISAR成像等

    易 俊,助理研究员,主要研究方向为太赫兹高灵敏探测技术、太赫兹雷达成像技术等

    王宏强,研究员,主要研究方向为太赫兹技术、量子雷达和雷达目标特性

    杨 琪,副教授,主要研究方向为太赫兹雷达系统和ISAR信号处理等

    通讯作者:

    李韬 291011219@qq.com

    王宏强 oliverwhq@tom.com

  • 责任主编:郝程鹏 Corresponding Editor: HAO Chengpeng
  • 中图分类号: TN95

Feature Detection of Acoustically Induced Sea Surface Micro-motions with Terahertz Radar

Funds: The National Natural Science Foundation of China (61921001, 61971427, 62035014, 62201591)
More Information
  • 摘要: 水下声信号传播到水面时,由于水和空气的声阻抗差,会激发水表面横向微幅波,其振动信号包含了声源的相关信息。雷达通过目标回波间的相位差来检测目标的微小位移,因此可以利用雷达检测水面微小位移变化获取水面振动信号,进而反演水下声源信息。该文首先分析了水下声传播的衰减特性及水面振动的物理模型,然后基于雷达回波模型对声致水面振动检测进行理论分析,提出了小波-卡尔曼滤波信号检测方法,最后在大型综合消声水池和黄海水域开展了基于太赫兹雷达的声致水面微动信号检测实验。实验结果表明所用太赫兹雷达能够检测声致水面的细微振动,所提算法能有效滤除水面干扰和雷达相位噪声并提取振动信号。实验首次在二级海况下检测到了亚微米级的振动信号,为水-空跨介质信息传输与水下航行器探测提供了依据。

     

  • 图  1  振幅和衰减系数随频率变化示意图

    Figure  1.  Schematic of amplitude and attenuation coefficient as a function of frequency

    图  2  声致水面振动俯视及纵向剖面振幅示意图

    Figure  2.  Schematic diagram of top view and longitudinal profile amplitude of acoustic water surface vibration

    图  3  小波-卡尔曼滤波算法流程图

    Figure  3.  Flowchart of wavelet-Kalman filtering algorithm

    图  4  水池实验场景

    Figure  4.  Pool experiment scene

    图  5  发射信号示意图

    Figure  5.  Schematic diagram of the emitted signal

    图  6  122.5 GHz太赫兹雷达水下0.2 m声源无干扰单频信号处理结果

    Figure  6.  122.5 GHz Terahertz radar underwater 0.2 m sound source without interference single-frequency signal processing results

    图  7  微波雷达水下0.2 m声源无干扰单频信号处理结果

    Figure  7.  Microwave radar underwater 0.2 m sound source without interference single-frequency signal processing results

    图  8  太赫兹雷达探测水下0.2 m声源无干扰单频信号处理频率分析

    Figure  8.  Frequency analysis of interference-free single-frequency signal processing for Terahertz radar detection of underwater 0.2 m sound source

    图  9  0.2 m无干扰线性调频信号及BPSK信号处理结果

    Figure  9.  0.2 m interference-free linear FM signal and BPSK signal processing results

    图  10  0.5 m声源无干扰单频信号处理结果

    Figure  10.  0.5 m sound source without interference single-frequency signal processing results

    图  11  1.0 m声源无干扰单频信号处理结果

    Figure  11.  1.0 m sound source without interference single-frequency signal processing results

    图  12  0.2 m带干扰信号处理结果

    Figure  12.  0.2 m band interference signal processing results

    图  13  海面实验示意及场景图

    Figure  13.  Schematic and scene diagram of the sea surface experiment

    图  14  海面起伏距离像及振动信息

    Figure  14.  Sea surface undulation distance image and vibration information

    图  15  0.5 m处300~500 Hz单频信号处理结果

    Figure  15.  Results of 300~500 Hz single-frequency signal processing at 0.5 m

    图  16  二级海况下300 Hz信号处理结果

    Figure  16.  Results of 300 Hz signal processing in secondary sea state

    图  17  半物理法推算检测振幅

    Figure  17.  Semi-physical method to derive detection amplitude

    表  1  雷达实验参数设置

    Table  1.   Radar experiment parameter setting

    参数第1组第2组
    中心频率(GHz)122.524.5
    带宽(GHz)11
    扫频时间(ms)0.10.5
    扫频周期(ms)0.20.5
    采样频率(kHz)1000256
    波束宽度(°)130
    下载: 导出CSV
  • [1] ZHOU Chenbo, LIU Kaihua, HE Junqing, et al. Experimental method for underwater acoustic field detection from water surface using laser probe[C]. Automated Optical Inspection for Industry: Theory, Technology, and Applications II, Beijing, China, 1998.
    [2] 戴振宏, 孙金祚, 隋鹏飞. 水下声源引起的水表面横向微波的理论研究[J]. 国防科技大学学报, 2004, 26(1): 95–98. doi: 10.3969/j.issn.1001-2486.2004.01.022

    DAI Zhenhong, SUN Jinzuo, and SUI Pengfei. Theoretical study on the water surface transversal mini-wave due to the underwater sound field[J]. Journal of National University of Defense Technology, 2004, 26(1): 95–98. doi: 10.3969/j.issn.1001-2486.2004.01.022
    [3] 章文勋. 电磁波应用研究的当代课题[J]. 电子科技导报, 1997(12): 6–7, 32.

    ZHANG Wenxun. Contemporary topics in applied electromagnetic wave research[J]. Electronic Science and Technology Herald, 1997(12): 6–7, 32.
    [4] 朱敏, 武岩波. 水声通信技术进展[J].中国科学院院刊, 2019, 34(3): 289–296.

    ZHU Min and WU Yanbo. Development of underwater acoustic communication technology[J]. Bulletin of Chinese Academy of Sciences , 2019, 34(3): 289–296.
    [5] 王俊, 王世练. 电磁波在水-空气两层媒质中的传播特性研究[J]. 舰船电子工程, 2019, 39(10): 227–231. doi: 10.3969/j.issn.1672-9730.2019.10.051

    WANG Jun and WANG Shilian. Research on propagation characteristics of electromagnetic waves in water-air two-layer media[J]. Ship Electronic Engineering, 2019, 39(10): 227–231. doi: 10.3969/j.issn.1672-9730.2019.10.051
    [6] 夏维华, 王一璐. 潜艇通信系统综述[J]. 计算机与网络, 2002(17): 55–57. doi: 10.3969/j.issn.1008-1739.2002.17.038

    XIA Weihua and WANG Yilu. Overview of submarine communication systems[J]. China Computer &Network, 2002(17): 55–57. doi: 10.3969/j.issn.1008-1739.2002.17.038
    [7] 师于杰, 任海刚. 国外非声探潜与隐身技术发展趋势[J]. 舰船电子工程, 2015, 35(1): 5–9. doi: 10.3969/j.issn1672-9730.2015.01.002

    SHI Yujie and REN Haigang. Trends of foreign non-acoustics exploration potential and stealth technology[J]. Ship Electronic Engineering, 2015, 35(1): 5–9. doi: 10.3969/j.issn1672-9730.2015.01.002
    [8] 刘伯胜. 水声学原理[M].北京: 科学出版社, 2019: 279–280.

    LIU Bosheng. Principles of Underwater Acoustics[M]. Beijing: Science Press, 2019: 279–280.
    [9] LEE M S, BOURGEOIS B S, HSIEH S T, et al. A laser sensing scheme for detection of underwater acoustic signals[C]. Conference Proceedings’88., IEEE Southeastcon, Knoxville, TN, USA, 1988: 253–257.
    [10] 宫彦军, 江荣熙, 李晓伟, 等. 利用激光从散射光中提取水下声信号的探测技术[J]. 烟台大学学报: 自然科学与工程版, 2003, 16(1): 38–42. doi: 10.3969/j.issn.1004-8820.2003.01.008

    GONG Yanjun, JIANG Rongxi, LI Xiaowei, et al. Detect technique of extracting underwater acoustic signal from scattered light by using laser[J]. Journal of Yantai University:Natural Science and Engineering Edition, 2003, 16(1): 38–42. doi: 10.3969/j.issn.1004-8820.2003.01.008
    [11] 王秀芳, 王江, 杨向东, 等. 相位激光测距技术研究概述[J]. 激光杂志, 2006, 27(2): 4–5. doi: 10.3969/j.issn.0253-2743.2006.02.002

    WANG Xiufang, WANG Jiang, YANG Xiangdong, et al. Phase laser rang finding technology and research summarization[J]. Laser Journal, 2006, 27(2): 4–5. doi: 10.3969/j.issn.0253-2743.2006.02.002
    [12] 孔琪. 相位式激光测距技术研究与实现[D]. [硕士论文], 四川师范大学, 2018.

    KONG Qi. Research and implementation of phase laser ranging technology[D]. [Master dissertation], Sichuan Normal University, 2018.
    [13] 刘继勇, 赵磊. 相位式激光测距系统关键技术探究[J]. 电子测试, 2014(5): 17–19.

    LIU Jiyong and ZHAO Lei. Phase laser ranging system key technology research[J]. Electronic Test, 2014(5): 17–19.
    [14] TONOLINI F and ADIB F. Networking across boundaries: Enabling wireless communication through the water-air interface[C]. 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 2018: 117–131.
    [15] 贾刚, 汪力, 张希成. 太赫兹波(terahertz)科学与技术[J]. 中国科学基金, 2002, 16(4): 200–203. doi: 10.3969/j.issn.1000-8217.2002.04.003

    JIA Gang, WANG Li, and ZHANG Xicheng. Terahertz science and technology[J]. Bulletin of National Natural Science Foundation of China, 2002, 16(4): 200–203. doi: 10.3969/j.issn.1000-8217.2002.04.003
    [16] 杨琪, 邓彬, 王宏强, 等. 太赫兹雷达目标微动特征提取研究进展[J]. 雷达学报, 2018, 7(1): 22–45. doi: 10.12000/JR17087

    YANG Qi, DENG Bin, WANG Hongqiang, et al. Advancements in research on micro-motion feature extraction in the terahertz region[J]. Journal of Radars, 2018, 7(1): 22–45. doi: 10.12000/JR17087
    [17] 马大猷. 现代声学理论基础[M]. 北京: 科学出版社, 2004: 65–68.

    MA Dayou. Fundamentals of Modern Acoustic Theory[M]. Beijing: Science Press, 2004: 65–68.
    [18] 张烈山. 声波激励水面微幅波的光学外差检测技术研究[D]. [博士论文], 哈尔滨工业大学, 2017.

    ZHANG Lieshan. Research on optical heterodyne detection technology for acoustically induced water surface capillary waves[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2017.
    [19] 张晓琳, 毛红杰, 李凯, 等. 相位解调实现低频水表面声波振幅探测[J]. 红外与激光工程, 2019, 48(5): 0506001. doi: 10.3788/IRLA201948.0506001

    ZHANG Xiaolin, MAO Hongjie, LI Kai, et al. Amplitude detection of low frequency water surface acoustic wave based on phase demodulation[J]. Infrared and Laser Engineering, 2019, 48(5): 0506001. doi: 10.3788/IRLA201948.0506001
    [20] 朱得糠, 刘永祥, 李康乐, 等. 基于雷达相位测距的微动特征获取[J]. 宇航学报, 2013, 34(4): 574–582. doi: 10.3873/j.issn.1000-1328.2013.04.018

    ZHU Dekang, LIU Yongxiang, LI Kangle, et al. Feature extraction for target with micro-motion based on radar phase derived range[J]. Journal of Astronautics, 2013, 34(4): 574–582. doi: 10.3873/j.issn.1000-1328.2013.04.018
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  2124
  • HTML全文浏览量:  573
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 修回日期:  2023-08-06
  • 网络出版日期:  2023-08-20
  • 刊出日期:  2023-08-28

目录

    /

    返回文章
    返回