多尺度特征融合与特征通道关系校准的SAR图像船舶检测

周雪珂 刘畅 周滨

周雪珂, 刘畅, 周滨. 多尺度特征融合与特征通道关系校准的SAR图像船舶检测[J]. 雷达学报, 2021, 10(4): 531–543. doi: 10.12000/JR21021
引用本文: 周雪珂, 刘畅, 周滨. 多尺度特征融合与特征通道关系校准的SAR图像船舶检测[J]. 雷达学报, 2021, 10(4): 531–543. doi: 10.12000/JR21021
ZHOU Xueke, LIU Chang, and ZHOU Bin. Ship detection in SAR images based on multi-scale features fusion and channel relation calibration of features[J]. Journal of Radars, 2021, 10(4): 531–543. doi: 10.12000/JR21021
Citation: ZHOU Xueke, LIU Chang, and ZHOU Bin. Ship detection in SAR images based on multi-scale features fusion and channel relation calibration of features[J]. Journal of Radars, 2021, 10(4): 531–543. doi: 10.12000/JR21021

多尺度特征融合与特征通道关系校准的SAR图像船舶检测

DOI: 10.12000/JR21021
基金项目: 国家重点研发计划(2017YFB0503001)
详细信息
    作者简介:

    周雪珂(1996–),女,陕西西安人,中国科学院大学硕士研究生,研究方向为 SAR图像处理、机器学习。

    刘 畅(1978–),男,山东烟台人,研究员,博士生导师。2006年在中国科学院 电子学研究所获得博士学位,现担任中国科学院空天信息创新研究院研究员、博士生导师。主要研究方向为SAR系统及其相关SAR成像处理。

    周 滨(1994–),男,江西上饶人,中国科学院大学硕士研究生。研究方向为 SAR 图像处理、目标检测。

    通讯作者:

    周雪珂 zhouxk96@163.com

  • 责任主编:刘涛 Corresponding Editor: LIU Tao
  • 中图分类号: TN957.52

Ship Detection in SAR Images Based on Multiscale Feature Fusion and Channel Relation Calibration of Features

Funds: The State Key Research Development Program of China (2017YFB0503001)
More Information
  • 摘要: 目前深度学习技术在SAR图像的船舶检测中已取得显著的成果,但针对SAR船舶图像中复杂多变的背景环境,如何准确高效地提取目标特征,提升检测精度与检测速度仍存在着巨大的挑战。针对上述问题,该文提出了一种多尺度特征融合与特征通道关系校准的 SAR 图像船舶检测算法。在Faster R-CNN的基础上,首先通过引入通道注意力机制对特征提取网络进行特征间通道关系校准,提高网络对复杂场景下船舶目标特征提取的表达能力;其次,不同于原始的基于单一尺度特征生成候选区域的方法,该文基于神经架构搜索算法引入改进的特征金字塔结构,高效地将多尺度特征进行充分融合,改善了船舶目标中对小目标、近岸密集目标的漏检问题。最后,在SSDD数据集上进行对比验证。实验结果表明,相较原始的Faster R-CNN,检测精度从85.4%提高到89.4%,检测速率也从2.8 FPS提高到10.7 FPS。该方法能够有效实现高速与高精度的SAR图像船舶检测,具有一定的现实意义。

     

  • 图  1  Faster R-CNN结构图

    Figure  1.  The frame structure of Faster R-CNN

    图  2  Resnet50的残差结构

    Figure  2.  The residual structure of Resnet50

    图  3  区域建议网络结构

    Figure  3.  The structure of region proposal network

    图  4  本文算法网络结构

    Figure  4.  The network structure of the algorithm in this paper

    图  5  RoI Align的实现原理

    Figure  5.  Implementation principle of RoI Align

    图  6  通道注意力模块结构

    Figure  6.  The structure of channel attention module

    图  7  NAS-FPN强化学习算法

    Figure  7.  Reinforcement learning for NAS-FPN

    图  8  FPN组合结构

    Figure  8.  The combination structure of FPN

    图  9  NAS-FPN结构图

    Figure  9.  The frame structure of NAS-FPN

    图  10  融合操作

    Figure  10.  Binary operation

    图  11  NAS-FPN热力图结果

    Figure  11.  The heatmaps of NAS-FPN

    图  12  不同算法的P-R曲线对比

    Figure  12.  The P-R curve of different methods

    图  13  小目标船舶图像的检测算法对比

    Figure  13.  Comparison of detection algorithms for small target

    图  14  近岸船舶图像的检测算法对比

    Figure  14.  Comparison of detection algorithms for inshore ship

    图  15  密集停靠的船舶图像检测算法对比

    Figure  15.  Comparison of detection algorithms for adjacent targets

    图  16  本文算法在AIR-SARShip 1.0数据上的检测结果

    Figure  16.  Detection result of this algorithm on AIR-SARShip 1.0

    表  1  以Resnet50作为主干网络的特征提取网络参数

    Table  1.   The network parameters extraction with Resnet50 as the backbone network feature

    网络层名称类型Resnet50SE-Resnet50
    卷积核(高度×宽度×通道数)/步长卷积核(高度×宽度×通道数)/步长
    Conv1卷积层$7 \times 7 \times 64/2$$7 \times 7 \times 64/2$
    max pool池化层$3 \times 3 \times 64/2$$3 \times 3 \times 64/2$
    Conv2_1—Conv2_9残差结构$\left[ {\begin{array}{*{20}{c}} {1 \times 1 \times 64/1} \\ {3 \times 3 \times 64/1} \\ {1 \times 1 \times 256/1} \end{array}} \right] \times 3$$\left[ {\begin{array}{*{20}{c} } {1 \times 1 \times 64/1} \\ {3 \times 3 \times 64/1} \\ {1 \times 1 \times 256/1} \\ { {{{\rm{fc}}} },[16,256]} \end{array} } \right] \times 3$
    Conv3_1—Conv3_12残差结构$\left[ {\begin{array}{*{20}{c}} {1 \times 1 \times 128/2} \\ {3 \times 3 \times 128/1} \\ {1 \times 1 \times 512/1} \end{array}} \right] \times 4$$\left[ {\begin{array}{*{20}{c} } {1 \times 1 \times 128/2} \\ {3 \times 3 \times 128/1} \\ {1 \times 1 \times 512/1} \\ {{\rm{fc}},[32,512]} \end{array} } \right] \times 4$
    Conv4_1—Conv4_18残差结构$\left[ {\begin{array}{*{20}{c}} {1 \times 1 \times 256/2} \\ {3 \times 3 \times 256/1} \\ {1 \times 1 \times 1024/1} \end{array}} \right] \times 6$$\left[ {\begin{array}{*{20}{c} } {1 \times 1 \times 256/2} \\ {3 \times 3 \times 256/1} \\ {1 \times 1 \times 1024/1} \\ {{\rm{fc}},[64,1024]} \end{array} } \right] \times 6$
    Conv5_1—Conv5_9残差结构$\left[ {\begin{array}{*{20}{c}} {1 \times 1 \times 512/1} \\ {3 \times 3 \times 512/1} \\ {1 \times 1 \times 2048/1} \end{array}} \right] \times 3$$\left[ {\begin{array}{*{20}{c} } {1 \times 1 \times 512/1} \\ {3 \times 3 \times 512/1} \\ {1 \times 1 \times 2048/1} \\ {{\rm{fc}},[128,{\rm{2048} }]} \end{array} } \right] \times 3$
    下载: 导出CSV

    表  2  基于Faster R-CNN的优化算法对比

    Table  2.   Comparison of optimization algorithms based on Faster R-CNN

    RoIAlignCANAS-FPNAP (%)Time (s/iter)Speed (FPS)
    85.40.6672.80
    87.20.7272.78
    88.20.7412.67
    88.00.49310.72
    89.40.53510.70
    下载: 导出CSV

    表  3  不同检测算法的性能对比

    Table  3.   Comparison of different detection algorithms

    MethodImage sizeFLOPs (230)Params (220)Time (s/iter)Speed (FPS)SSDDHRSID
    AP (%)AP (%)
    SSD300×30030.4923.750.06147.2084.779.6
    Cascade R-CNN300×30059.0368.930.32313.2088.480.9
    PANet300×30059.0368.930.30114.7088.781.3
    本文算法300×30033.6670.270.53510.7089.482.8
    下载: 导出CSV

    表  4  不同检测算法基于SSDD在近岸与离岸场景下的性能对比

    Table  4.   Comparison of different detection algorithms in inshore and offshore scenes of SSDD

    MethodInshoreOffshore
    AP (%)R (%)AP (%)R (%)
    SSD73.692.788.195.7
    Cascade R-CNN73.790.790.495.0
    PANet73.788.090.793.6
    本文算法74.390.790.794.1
    下载: 导出CSV
  • [1] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [2] 郭倩, 王海鹏, 徐丰. SAR图像飞机目标检测识别进展[J]. 雷达学报, 2020, 9(3): 497–513. doi: 10.12000/JR20020

    GUO Qian, WANG Haipeng, and XU Feng. Research progress on aircraft detection and recognition in SAR imagery[J]. Journal of Radars, 2020, 9(3): 497–513. doi: 10.12000/JR20020
    [3] WACKERMAN C C, FRIEDMAN K S, PICHEL W G, et al. Automatic detection of ships in RADARSAT-1 SAR imagery[J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568–577. doi: 10.1080/07038992.2001.10854896
    [4] 陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3): 413–424. doi: 10.12000/JR19041

    CHEN Huiyuan, LIU Zeyu, GUO Weiwei, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3): 413–424. doi: 10.12000/JR19041
    [5] 李健伟, 曲长文, 邵嘉琦, 等. 基于深度学习的SAR图像舰船检测数据集及性能分析[C]. 第五届高分辨率对地观测学术年会论文集, 西安, 2018: 180–201.

    LI Jianwei, QU Changwen, SHAO Jiaqi, et al. Dataset and performance analysis of ship detection methods based on deep learning[C]. The 5th China High Resolution Earth Observation Conference, Xi’an, China, 2018: 180–201.
    [6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
    [7] GIRSHICK R. Fast R-CNN[C]. IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
    [8] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [10] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [11] 李健伟, 曲长文, 彭书娟. 基于级联CNN的SAR图像舰船目标检测算法[J]. 控制与决策, 2019, 34(10): 2191–2197. doi: 10.13195/j.kzyjc.2018.0168

    LI Jianwei, QU Changwen, and PENG Shujuan. A ship detection method based on cascade CNN in SAR images[J]. Control and Decision, 2019, 34(10): 2191–2197. doi: 10.13195/j.kzyjc.2018.0168
    [12] 李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004

    LI Guangshuai, SU Juan, and LI Yihong. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004
    [13] WANG Rui, SHAO Sihan, AN Mengyu, et al. Soft thresholding attention network for adaptive feature denoising in SAR ship detection[J]. IEEE Access, 2021, 9: 29090–29105. doi: 10.1109/ACCESS.2021.3059033
    [14] ZHANG Tianwen and ZHANG Xiaoling. High-speed ship detection in SAR images based on a grid convolutional neural network[J]. Remote Sensing, 2019, 11(10): 1206. doi: 10.3390/rs11101206
    [15] ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11(21): 2483. doi: 10.3390/rs11212483
    [16] ZHANG Tianwen and ZHANG Xiaoling. ShipDeNet-20: An only 20 convolution layers and <1-MB lightweight SAR ship detector[J]. IEEE Geoscience and Remote Sensing Letters, in press.
    [17] ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. HyperLi-Net: A hyper-light deep learning network for high-accurate and high-speed ship detection from synthetic aperture radar imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 123–153. doi: 10.1016/j.isprsjprs.2020.05.016
    [18] GHIASI G, LIN T Y, and LE Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 7029–7038. doi: 10.1109/CVPR.2019.00720.
    [19] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 936–944, doi: 10.1109/CVPR.2017.106.
    [20] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
    [21] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—Improving object detection with one line of code[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 5562–5570. doi: 10.1109/ICCV.2017.593.
    [22] HU Jie, LI Shen, GANG Sun, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [23] ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. LS-SSDD-v1.0: A deep learning dataset dedicated to small ship detection from large-scale sentinel-1 SAR images[J]. Remote Sensing, 2020, 12(18): 2997. doi: 10.3390/rs12182997
    [24] WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/ACCESS.2020.3005861
    [25] 孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097

    SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
    [26] CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162, doi: 10.1109/CVPR.2018.00644.
    [27] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768. doi: 10.1109/CVPR.2018.00913.
    [28] ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. Balance scene learning mechanism for offshore and inshore ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, in press.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  3341
  • HTML全文浏览量:  1211
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-04-05
  • 网络出版日期:  2021-08-28

目录

    /

    返回文章
    返回