一种双极化气象雷达自适应谱极化滤波方法

安孟昀 殷加鹏 黄建开 庞晨 李永祯 王雪松

安孟昀, 殷加鹏, 黄建开, 等. 一种双极化气象雷达自适应谱极化滤波方法[J]. 雷达学报, 2022, 11(3): 408–417. doi: 10.12000/JR21199
引用本文: 安孟昀, 殷加鹏, 黄建开, 等. 一种双极化气象雷达自适应谱极化滤波方法[J]. 雷达学报, 2022, 11(3): 408–417. doi: 10.12000/JR21199
AN Mengyun, YIN Jiapeng, HUANG Jiankai, et al. Adaptive spectral polarization filter design for dual-polarization weather radar[J]. Journal of Radars, 2022, 11(3): 408–417. doi: 10.12000/JR21199
Citation: AN Mengyun, YIN Jiapeng, HUANG Jiankai, et al. Adaptive spectral polarization filter design for dual-polarization weather radar[J]. Journal of Radars, 2022, 11(3): 408–417. doi: 10.12000/JR21199

一种双极化气象雷达自适应谱极化滤波方法

DOI: 10.12000/JR21199
基金项目: 国家自然科学基金(61971429, 62171447),博士后国际交流计划引进项目(48132),湖南省科技创新人才计划优秀博士后创新人才项目(2020RC2042),国防科技大学科研计划项目(ZK21-25)
详细信息
    作者简介:

    安孟昀(1997–),女,河北人,在读博士研究生,主要研究方向为极化雷达信号处理

    殷加鹏(1990–),男,浙江人,国防科技大学副研究员,主要研究方向为极化雷达信号处理

    黄建开(1994–),男,福建人,在读博士研究生,主要研究方向为极化雷达信号处理

    庞 晨(1986–),男,湖北人,国防科技大学副研究员,主要研究方向为极化信息处理、雷达目标分辨与识别技术

    李永祯(1977–),男,内蒙古人,国防科技大学研究员、博士生导师,主要研究方向为雷达极化信息处理、空间电子对抗、目标检测与识别

    王雪松(1972–),男,内蒙古人,国防科技大学教授、博士生导师,主要研究方向为新体制雷达技术、极化成像与识别、智能电子防御与电子对抗

    通讯作者:

    殷加鹏 yinjiapeng@nudt.edu.cn

  • 责任主编:李海 Corresponding Editor: LI Hai
  • 中图分类号: TN95

Adaptive Spectral Polarization Filter Design for Dual-polarization Weather Radar

Funds: The National Natural Science Foundation of China (61971429, 62171447), Postdoctoral International Exchange Program (48132), Science and Technology Innovation Program of Hunan Province (2020RC2042), The Scientific Research Program of the National University of Defense Technology (ZK21-25)
More Information
  • 摘要: 针对双极化气象雷达中非气象回波的滤除问题,该文提出一种基于詹森-香农散度原理的自适应移动谱去极化比(AMsDR)滤波方法。该方法根据不同方位向回波的谱去极化比分布情况,利用气象回波和杂波在距离-多普勒图上的特征差异实现气象回波的保留和杂波的滤除。与现有固定阈值的移动谱去极化比滤波器相比,AMsDR滤波方法可根据不同方位向降雨和杂波的回波差异自适应地选择滤波阈值,提高杂波抑制与降雨保留性能。

     

  • 图  1  AMsDR滤波器流程图

    Figure  1.  Flow chart of the AMsDR filter

    图  2  阈值选取算法流程图

    Figure  2.  Flow chart of the algorithm for threshold selection

    图  3  原始反射率

    Figure  3.  Raw reflectivity

    图  4  IDRA雷达在方位角为316.9°时的谱极化参数

    Figure  4.  The spectral polarimetric variables of IDRA radar at an azimuth angle of 316.9°

    图  5  JS散度与阈值T的关系

    Figure  5.  Relationship between the JS divergence and the threshold T

    图  6  滤波之后的谱功率

    Figure  6.  Spectral power after filtering

    图  7  滤波处理后的反射率

    Figure  7.  Reflectivity after filtering

    图  8  2016年3月4日00:00 (UTC时间)的雷达数据不同处理后的反射率因子

    Figure  8.  Reflectivity after different processing of the radar data at 00:00, 4 March 2016 (UTC time)

    图  9  2017年4月26日12:00 (UTC时间)的雷达数据不同处理后的反射率因子

    Figure  9.  Reflectivity after different processing of the radar data at 12:00, 26 April 2017 (UTC time)

    表  1  IDRA雷达参数

    Table  1.   IDRA radar specifications

    参数数值或属性
    类型线性FMCW
    发射机类型固态
    极化类型ATSR模式
    中心频率9.475 GHz
    发射功率20 W
    扫描时间409.6 μs
    带宽5 MHz
    天线宽度1.8°
    扫描角俯仰角0.5°
    方位角0°~360°
    扫描周期1圈/min
    下载: 导出CSV
  • [1] DOVIAK R J and ZRNIC D S. Doppler Radar and Weather Observations[M]. 2nd ed. Mineola: Dover Publications, 2006.
    [2] BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2001.
    [3] MATROSOV S Y, CLARK K A, MARTNER B E, et al. X-Band polarimetric radar measurements of rainfall[J]. Journal of Applied Meteorology, 2002, 41(9): 941–952. doi: 10.1175/1520-0450(2002)041<0941:XBPRMO>2.0.CO;2
    [4] RYZHKOV A V, SCHUUR T J, BURGESS D W, et al. The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification[J]. Bulletin of the American Meteorological Society, 2005, 86(6): 809–824. doi: 10.1175/BAMS-86-6-809
    [5] CHEN Haonan and CHANDRASEKAR V. The quantitative precipitation estimation system for Dallas-Fort Worth (DFW) urban remote sensing network[J]. Journal of Hydrology, 2015, 531: 259–271. doi: 10.1016/j.jhydrol.2015.05.040
    [6] DIXON M and WIENER G. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10(6): 785–797. doi: 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
    [7] STENSRUD D J, XUE Ming, WICKER L J, et al. Convective-scale warn-on-forecast system: A vision for 2020[J]. Bulletin of the American Meteorological Society, 2009, 90(10): 1487–1500. doi: 10.1175/2009BAMS2795.1
    [8] FUKAO S and HAMAZU K. Radar for Meteorological and Atmospheric Observations[M]. Tokyo: Springer, 2014.
    [9] 殷加鹏, 李健兵, 庞晨, 等. 一种极化-多普勒气象雷达的射频干扰滤波方法[J]. 雷达学报, 2021, 10(6): 905–918. doi: 10.12000/JR21102

    YIN Jiapeng, LI Jianbing, PANG Chen, et al. A radio frequency interference mitigation method for polarimetric Doppler weather radar[J]. Journal of Radars, 2021, 10(6): 905–918. doi: 10.12000/JR21102
    [10] YIN Jiapeng, UNAL C M H, and RUSSCHENBERG H W J. Narrow-band clutter mitigation in spectral polarimetric weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4655–4667. doi: 10.1109/TGRS.2017.2696263
    [11] GROGINSKY H L and GLOVER K M. Weather radar canceller design[C]. The 19th Conference on Radar Meteorology, Boston, USA, 1980: 192–198.
    [12] SIGGIA A D and PASSARELLI R E. Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation[C]. The 3rd European Conference on Radar Meteorology (ERAD 2004), Visby, Sweden, 2004: 67–73.
    [13] HUBBERT J C, DIXON M, ELLIS S M, et al. Weather radar ground clutter. Part I: Identification, modeling, and simulation[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1165–1180. doi: 10.1175/2009JTECHA1159.1
    [14] HUBBERT J C, DIXON M, and ELLIS S M. Weather radar ground clutter. Part II: Real-time identification and filtering[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1181–1197. doi: 10.1175/2009JTECHA1160.1
    [15] LI Yinguang, ZHANG Guifu, DOVIAK R J, et al. A new approach to detect ground clutter mixed with weather signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2373–2387. doi: 10.1109/TGRS.2012.2209658
    [16] LI Nan, WANG Zhenhui, SUN Kangyuan, et al. A quality control method of ground-based weather radar data based on statistics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2211–2219. doi: 10.1109/TGRS.2017.2776562
    [17] WARDE D A and TORRES S M. The autocorrelation spectral density for Doppler-weather-radar signal analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 508–518. doi: 10.1109/TGRS.2013.2241775
    [18] HUBBERT J C, MEYMARIS G, ROMATSCHKE U, et al. Using a regression ground clutter filter to improve weather radar signal statistics: Theory and simulations[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38(8): 1353–1375. doi: 10.1175/JTECH-D-20-0026.1
    [19] KRASNOV O A and YAROVOY A G. Polarimetric micro-Doppler characterization of wind turbines[C]. 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016: 1–5.
    [20] UNAL C. Spectral polarimetric radar clutter suppression to enhance atmospheric echoes[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(9): 1781–1797. doi: 10.1175/2009JTECHA1170.1
    [21] YIN Jiapeng, UNAL C, and RUSSCHENBERG H. Object-orientated filter design in spectral domain for polarimetric weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 2725–2740. doi: 10.1109/TGRS.2018.2876632
    [22] YIN Jiapeng, CHEN Haonan, LI Yongzhen, et al. Clutter mitigation based on spectral depolarization ratio for dual-polarization weather radars[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6131–6145. doi: 10.1109/JSTARS.2021.3088324
    [23] BLOCH I and MAÎTRE H. Fuzzy mathematical morphology[J]. Annals of Mathematics and Artificial Intelligence, 1994, 10(1/2): 55–84. doi: 10.1007/BF01530944
    [24] SHANNON C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 1949, 28(4): 656–715. doi: 10.1002/j.1538-7305.1949.tb00928.x
    [25] LIN Jianhua. Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information Theory, 1991, 37(1): 145–151. doi: 10.1109/18.61115
    [26] ENDRES D M and SCHINDELIN J E. A new metric for probability distributions[J]. IEEE Transactions on Information Theory, 2003, 49(7): 1858–1860. doi: 10.1109/tit.2003.813506
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  747
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-01-21
  • 网络出版日期:  2022-03-08
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回