建筑物Ku波段极化SAR成像仿真及损毁评估特征分析

庞雷 张风丽 王国军 刘娜 邵芸 张家萌 赵钰川 庞蕾

庞雷, 张风丽, 王国军, 等. 建筑物Ku波段极化SAR成像仿真及损毁评估特征分析[J]. 雷达学报, 2020, 9(3): 578–587. doi: 10.12000/JR20061
引用本文: 庞雷, 张风丽, 王国军, 等. 建筑物Ku波段极化SAR成像仿真及损毁评估特征分析[J]. 雷达学报, 2020, 9(3): 578–587. doi: 10.12000/JR20061
PANG Lei, ZHANG Fengli, WANG Guojun, et al. Imaging simulation and damage assessment feature analysis of Ku band polarized SAR of buildings[J]. Journal of Radars, 2020, 9(3): 578–587. doi: 10.12000/JR20061
Citation: PANG Lei, ZHANG Fengli, WANG Guojun, et al. Imaging simulation and damage assessment feature analysis of Ku band polarized SAR of buildings[J]. Journal of Radars, 2020, 9(3): 578–587. doi: 10.12000/JR20061

建筑物Ku波段极化SAR成像仿真及损毁评估特征分析

DOI: 10.12000/JR20061
基金项目: 国家重点研发计划(2016YFB0502504),国家自然科学基金(41671359),北京高等学校高水平人才交叉培养“实培计划”项目(编号17)
详细信息
    作者简介:

    庞 雷(1996–),男,四川人,中国科学院大学硕士研究生,研究方向为微波遥感、SAR图像处理。E-mail: panglei18@mails.ucas.ac.cn

    张风丽(1978–),女,山东人,博士,中国科学院空天信息创新研究院副研究员,研究方向为雷达遥感机理与方法、国产SAR卫星数据处理和应用。发表论文70余篇,出版专著2部,获发明专利授权6项。E-mail: zhangfl@aircas.ac.cn

    王国军(1986–),男,湖北人,博士,中国科学院空天信息创新研究院助理研究员,研究方向为SAR遥感应用及数据分析。E-mail: wanggj@radi.ac.cn

    刘 娜(1994–),女,辽宁人,中国科学院大学硕士研究生,研究方向为微波遥感、SAR图像处理。E-mail: liuna@radi.ac.cn

    邵 芸(1961–),女,中国科学院空天信息创新研究院研究员,中共十八大、十九大代表。长期从事雷达遥感机理与应用研究,发表论文260余篇。E-mail: shaoyun@aircas.ac.cn

    张家萌(1996–),女,河北人,北京建筑大学硕士研究生,研究方向为摄影测量与遥感、微波遥感、SAR图像处理。E-mail: 2108521519003@stu.bucea.edu.cn

    赵钰川(1997–),男,北京人,北京建筑大学本科,研究方向为微波遥感、SAR图像处理。E-mail: 847733296@qq.com

    庞 蕾(1971–),女,博士,北京建筑大学副教授,主要研究方向为多基线干涉SAR数据处理与应用。E-mail: panglei@bucea.edu.cn

    通讯作者:

    张风丽 zhangfl@aircas.ac.cn

  • 责任主编:陈思伟 Corresponding Editor: CHEN Siwei
  • 中图分类号: TN957.52

Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings

Funds: The National Key R&D Program of China (2016YFB0502504), The National Natural Science Foundation of China (41671359), The “Practical Training Plan” Project for Cross Training of High Level Talents in Beijing Colleges and Universities (No. 17)
More Information
  • 摘要: 建筑物损毁评估在灾害应急监测中十分重要。近年来,随着SAR硬件多极化能力的增加,极化SAR为建筑物损毁评估提供了更多的可能性,基于极化特征的建筑物损毁评估方法逐渐成为了研究的重点。然而,由于极化SAR数据获取的限制,当前的研究主要集中在L, C, X等有限波段内。为了进一步加深对SAR图像损毁建筑物极化特征的理解并丰富其它波段下SAR图像损毁建筑物的极化特征应用,该文进行了建筑物Ku波段极化SAR仿真实验,并通过SAR图像极化分解的方法进行了损毁评估特征分析。该文首先制作了真实材料的建筑物缩比模型,利用微波特性测量与仿真成像科学实验平台对损毁前后的建筑物目标进行SAR仿真成像,获取了建筑物损毁前后的Ku波段极化SAR图像。然后,借助$ H/A/\alpha $分解、Yamaguchi分解、Touzi分解等极化分解方法分析了Ku波段建筑物目标损毁前后的极化散射特征,分析表明,Yamaguchi分解得到的去定向后的体散射分量、二次散射分量占比以及Touzi分解得到的$ {\alpha }_{\rm s1} $分量对于Ku波段建筑物损毁评估具有较好的指示意义;通过与X波段实验测量结果的对比,发现Ku波段对建筑物损毁评估更敏感,这对于未来雷达遥感应用具有重要的启发意义。

     

  • 图  1  微波特性测量与仿真成像科学实验平台内景

    Figure  1.  Microwave characteristic measurement and simulation imaging science experiment platform interior view

    图  2  完好与损毁建筑物缩比模型(1:50倍缩比)

    Figure  2.  Scale model of intact and damaged buildings (1:50)

    图  3  入射角与方位角定义

    Figure  3.  Definition of incidence angle and azimuth angle

    图  4  0°方位角测量结果对比

    Figure  4.  Comparison of measurement results of 0° azimuth angle

    图  5  30°方位角损毁前后测量结果对比

    Figure  5.  Comparison of measurement results of 30° azimuth angle

    图  6  60°方位角损毁前后测量结果对比

    Figure  6.  Comparison of measurement results of 60° azimuth angle

    图  7  去定向前后的体散射分量分布

    Figure  7.  Distribution of Vol before and after disoriented

    图  8  去定向前后的二次散射分量占比分布

    Figure  8.  Distribution of ${R_{\rm s}}$ before and after disoriented

    图  9  建筑物损毁前后${\alpha _{{\rm{s}}1}}$$\left| {{\tau _2}} \right|$的分布

    Figure  9.  Distribution of ${\alpha _{{\rm{s}}1}}$ and $\left| {{\tau _2}} \right|$ before and after building damage

    图  10  X波段建筑物损毁前后体散射分量、二次散射分量占比与${\alpha _{{\rm{s}}1}}$分量的分布

    Figure  10.  Distribution of Vol, ${R_{\rm s}}$ and ${\alpha _{{\rm{s}}1}}$ before and after building damage in X band

    表  1  实验平台功能及性能参数

    Table  1.   The function and performance parameters of experiment platform

    功能参数
    波段范围0.8~20 GHz
    极化方式单极化/双极化/全极化
    入射角0°~90°
    方位向0°~360°
    轨道精度mm级精确控制
    成像模式SpotLight/StripMap/ISAR等模式
    双天线InSAR成像技术
    3D层析SAR成像技术
    双站测量
    被测目标尺寸1 cm×1 cm×1 cm~4 m×3 m×3 m
    下载: 导出CSV

    表  2  仿真图像指标参数

    Table  2.   Simulation image index parameters

    序号波段极化方式入射角(°)方位角(°)像元大小(cm)实际分辨率(m)
    1KuHH, HV, VH, VV5002.51.25
    2KuHH, HV, VH, VV50302.51.25
    3KuHH, HV, VH, VV50602.51.25
    4KuHH, HV, VH, VV50902.51.25
    5KuHH, HV, VH, VV501202.51.25
    6KuHH, HV, VH, VV501502.51.25
    7KuHH, HV, VH, VV501802.51.25
    下载: 导出CSV
  • [1] Tadono T, Ohki M, and Abe T. Summary of natural disaster responses by the Advanced Land Observing Satellite-2(ALOS-2)[C]. The International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Kyoto, Japan, 2019: 69–72. doi: 10.5194/isprs-archives-XLII-3-W7-69-2019.
    [2] 张风丽, 邵芸. 城市目标高分辨率SAR遥感监测技术研究进展[J]. 遥感技术与应用, 2010, 25(3): 415–422. doi: 10.11873/j.issn.1004-0323.2010.3.415

    ZHANG Fengli and SHAO Yun. Urban target monitoring using high resolution SAR data[J]. Remote Sensing Technology and Application, 2010, 25(3): 415–422. doi: 10.11873/j.issn.1004-0323.2010.3.415
    [3] CHEN Qihao, LI Linlin, JIANG Ping, et al. Building collapse extraction using modified freeman decomposition from post-disaster polarimetric SAR image[C]. 2016 IEEE International Geoscience And Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 5769–5772. doi: 10.1109/IGARSS.2016.7730507.
    [4] WANG Xiaoqing, DOU Aixia, JIN Dingjian, et al. Study on the comparation of building damage extracted from different RS images acquired after 2010 M = 7.1 Yushu, Qinghai, China earthquake[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 935–938. doi: 10.1109/IGARSS.2012.6351401.
    [5] ZHANG Haizhen, WANG Qing, ZENG Qiming, et al. A novel approach to building collapse detection from post-seismic polarimetric SAR imagery by using optimization of polarimetric contrast enhancement[C]. 2015 IEEE International Geoscience And Remote Sensing Symposium (IGARSS), Milan, Italy, 2015: 3270–3273. doi: 10.1109/IGARSS.2015.7326516.
    [6] PARK S E, YAMAGUCHI Y, and KIM D J. Polarimetric SAR remote sensing of the 2011 Tohoku earthquake using ALOS/PALSAR[J]. Remote sensing of Environment, 2013, 132: 212–220. doi: 10.1016/j.rse.2013.01.018
    [7] ZHAI Wei, SHEN Huanfeng, HUANG Chunlin, et al. Building earthquake damage information extraction from a single post-earthquake PolSAR image[J]. Remote Sensing, 2016, 8(3): 171. doi: 10.3390/rs8030171
    [8] SATO M, CHEN Siwei, and SATAKE M. Polarimetric SAR analysis of tsunami damage following the March 11, 2011 East Japan earthquake[J]. Proceedings of the IEEE, 2012, 100(10): 2861–2875. doi: 10.1109/JPROC.2012.2200649
    [9] WATANABE M, MOTOHKA T, MIYAGI Y, et al. 2012. Analysis of urban areas affected by the 2011 off the pacific coast of Tohoku earthquake and tsunami with L-Band SAR full-polarimetric mode[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 472–476. doi: 10.1109/LGRS.2011.2182030
    [10] ZHAI Wei and HUANG Chunlin. Fast building damage mapping using a single post-earthquake PolSAR image: A case study of the 2010 Yushu earthquake[J]. Earth, Planets and Space, 2016, 68(1): 86. doi: 10.1186/s40623-016-0469-2
    [11] ZHAI Wei, HUANG Chunlin, and PEI Wansheng. Two new polarimetric feature parameters for the recognition of the different kinds of buildings in earthquake-stricken areas based on entropy and eigenvalues of PolSAR decomposition[J]. Remote Sensing, 2018, 10(10): 1613. doi: 10.3390/rs10101613
    [12] LI Xinwu, GUO Huadong, ZHANG Lu, et al. A new approach to collapsed building extraction using RADARSAT-2 polarimetric SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 677–681. doi: 10.1109/LGRS.2011.2178392
    [13] SUN Weidong, SHI Lei, YANG Jie, et al. Building collapse assessment in urban areas using texture information from postevent SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3792–3808. doi: 10.1109/JSTARS.2016.2580610
    [14] ZHAO Lingli, YANG Jie, LI Pingxiang, et al. Damage assessment in urban areas using post-earthquake airborne PolSAR imagery[J]. International Journal of Remote Sensing, 2013, 34(24): 8952–8966. doi: 10.1080/01431161.2013.860566
    [15] GE Pinglan, GOKON H, and MEGURO K. A review on synthetic aperture radar-based building damage assessment in disasters[J]. Remote Sensing of Environment, 2020, 240: 111693. doi: 10.1016/j.rse.2020.111693
    [16] CHEN Siwei, WANG Xuesong, and SATO M. Urban damage level mapping based on scattering mechanism investigation using fully polarimetric SAR data for the 3.11 East Japan earthquake[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 6919–6929. doi: 10.1109/TGRS.2016.2588325
    [17] 王雪松, 陈思伟. 合成孔径雷达极化成像解译识别技术的进展与展望[J]. 雷达学报, 2020, 9(2): 259–276. doi: 10.12000/JR19109

    WANG Xuesong and CHEN Siwei. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives[J]. Journal of Radars, 2020, 9(2): 259–276. doi: 10.12000/JR19109
    [18] FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687
    [19] YAMAGUCHI Y, SATO A, BOERNER W M, et al. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2251–2258. doi: 10.1109/TGRS.2010.2099124
    [20] JI Kefeng and WU Yonghui. Scattering mechanism extraction by a modified cloude-pottier decomposition for dual polarization SAR[J]. Remote Sensing, 2015, 7(6): 7447–7470. doi: 10.3390/rs70607447
    [21] CHIEN L L C, EWE H T, and SAW S H. Understanding the correlation in scattering mechanisms between H-Alpha decomposition and theoretical modelling[C]. 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 2018: 1198–1203. doi: 10.23919/PIERS.2018.8597662.
    [22] TOUZI R. Target scattering decomposition in terms of roll-invariant target parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 73–84. doi: 10.1109/TGRS.2006.886176
    [23] AN Wentao, XIE Chunhua, YUAN Xinzhe, et al. Four-component decomposition of polarimetric SAR images with deorientation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1090–1094. doi: 10.1109/LGRS.2011.2157078
    [24] 孙翔, 宋红军, 王宇, 等. 基于高分辨率全极化SAR图像的取向角校正方法[J]. 雷达学报, 2018, 7(4): 465–474. doi: 10.12000/JR18026

    SUN Xiang, SONG Hongjun, WANG R, et al. POA correction method using high-resolution full-polarization SAR image[J]. Journal of Radars, 2018, 7(4): 465–474. doi: 10.12000/JR18026
    [25] LIU Shan, ZHANG Fengli, WEI Shiying, et al. Building damage mapping based on Touzi decomposition using quad-polarimetric ALOS PALSAR data[J]. Frontiers of Earth Science, 2020: 1–12. doi: 10.1007/s11707-019-0779-3
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2752
  • HTML全文浏览量:  1161
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 修回日期:  2020-06-24
  • 网络出版日期:  2020-06-01

目录

    /

    返回文章
    返回