基于涡旋电磁波体制的三维SAR成像方法

吕坤 马晖 刘宏伟

吕坤, 马晖, 刘宏伟. 基于涡旋电磁波体制的三维SAR成像方法[J]. 雷达学报, 2021, 10(5): 691–698. doi: 10.12000/JR21125
引用本文: 吕坤, 马晖, 刘宏伟. 基于涡旋电磁波体制的三维SAR成像方法[J]. 雷达学报, 2021, 10(5): 691–698. doi: 10.12000/JR21125
LYU Kun, MA Hui, and LIU Hongwei. Three-dimensional imaging using the electromagnetic vortex synthetic aperture radar[J]. Journal of Radars, 2021, 10(5): 691–698. doi: 10.12000/JR21125
Citation: LYU Kun, MA Hui, and LIU Hongwei. Three-dimensional imaging using the electromagnetic vortex synthetic aperture radar[J]. Journal of Radars, 2021, 10(5): 691–698. doi: 10.12000/JR21125

基于涡旋电磁波体制的三维SAR成像方法

DOI: 10.12000/JR21125
基金项目: 国家自然基金青年基金(61901344),电子信息控制重点实验室基金,装备预先研究领域基金(80913010102),博士后创新人才支持计划(BX20180239),博士后基金(2019M653562),高等学校学科创新引智计划(B18039)
详细信息
    作者简介:

    吕 坤(1996–),男,山西运城人,西安电子科技大学电子工程学院在读博士研究生。主要研究方向为雷达信号处理、涡旋电磁新体制雷达

    马 晖(1989–),女,博士,副教授。2015年在北京航空航天大学获得工学博士学位。现担任西安电子科技大学电子工程学院副教授。主要研究方向为雷达成像、新体制雷达、智能雷达、雷达信号处理

    刘宏伟(1971–),男,博士,教授。1999年于西安电子科技大学获得信息处理专业博士学位。现任西安电子科技大学教授、博士生导师。主要研究方向为雷达目标识别、认知探测、网络化协同探测、雷达智能化

    通讯作者:

    马晖 h.ma@xidian.edu.cn

  • 责任主编:刘康 Corresponding Editor: LIU Kang
  • 中图分类号: TN95

Three-dimensional Imaging Using the Electromagnetic Vortex Synthetic Aperture Radar

Funds: The National Nature Fund Youth Fund (61901344), The Key Laboratory Fund of Electronic Information Control, The Equipment Advance Research Fund (80913010102), The Postdoctoral Innovative Talent Support Program (BX20180239), The Postdoctoral Fund (2019M653562), The Discipline Innovation and Talent Introduction Program of Colleges and Universities (B18039)
More Information
  • 摘要: 涡旋电磁波得名于其传播时围绕行进轴的旋转现象,该电磁属性被称为轨道角动量。基于其在方位角上的目标分辨能力,该文将涡旋电磁波引入传统的合成孔径成像中,提出了一种新的三维成像方案。在结合轨道角动量模态域之后,将合成孔径雷达二维回波扩展到三维。首先,基于波形分集理论,获取同时多模态回波数据,并利用傅里叶变换(FT)变换到方位角维,形成距离-合成孔径方位-方位角三维数据。然后,基于Radon-FT,提出了一种联合二维方位压缩算法来生成三维目标成像。仿真结果验证了系统和算法的性能,证明了涡旋电磁三维合成孔径成像雷达系统的优越性。

     

  • 图  1  EMV-SAR 成像几何关系

    Figure  1.  The observation coordinates the EMV-SAR

    图  2  EMV-SAR 信号处理流程

    Figure  2.  EMV-SAR 3D imaging processing algorithm

    图  3  涡旋方位角域成像结果

    Figure  3.  The imaging result of EMV azimuth domain

    图  4  点目标三维重建结果

    Figure  4.  Point target 3D reconstruction result

    图  5  点目标不同切面成像结果

    Figure  5.  Point target imaging results of different slices

    图  6  点目标不同维度成像结果

    Figure  6.  Point target imaging results in different dimensions

    表  1  仿真涉及雷达参数

    Table  1.   Simulation Radar parameters

    参数
    雷达坐标 (m)(–20, [–1, 1], 0)
    成像区域 (m)([–5,5], [–1,1], [–1.5,1.5])
    OAM模态[–40,40]
    雷达高度 (m)300
    雷达速度 (m/s)20
    载频 (GHz)35
    脉冲重复频率 (Hz)2000
    信号带宽 (GHz)1
    UCA半径 ($\lambda $)40
    UCA阵元个数50
    下载: 导出CSV

    表  2  点目标理论坐标与仿真坐标

    Table  2.   Theoretical coordinates and simulation coordinates of point targets

    参数初始坐标 (m)重构结果 (m)
    点目标1(1, 0.2, 1)(0.99, 0.19, 0.95)
    点目标2(1, 0.2, –1)(0.99, 0.21, –1.00)
    点目标3(1, –0.2, 1)(1.00, –0.21, 1.05)
    点目标4(1, –0.2, –1)(1.00, –0.19, –1.00)
    点目标5(–1, 0.2, 1)(–1.05, 0.20, 0.95)
    点目标6(–1, 0.2, –1)(–1.05, 0.21, –1.05)
    点目标7(–1, –0.2, 1)(–1.05, –0.22, 1.05)
    点目标8(–1, –0.2, –1)(–1.05, –0.20, –1.00)
    下载: 导出CSV
  • [1] GISIN N. Quantum Science and Technology[M]. Springer International Publishing AG, 2017.
    [2] MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
    [3] TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: first experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001
    [4] EDFORS O and JOHANSSON A J. Is orbital angular momentum (OAM) based radio communication an unexploited area?[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126–1131. doi: 10.1109/TAP.2011.2173142
    [5] TAMBURINI F, THIDÉ B, MARI E, et al. Reply to comment on ‘Encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118002. doi: 10.1088/1367-2630/14/11/118002
    [6] TAMBURINI F, THIDÉ B, BOAGA V, et al. Experimental demonstration of free-space information transfer using phase modulated orbital angular momentum radio[J]. arXiv: 1302.2990, 2013.
    [7] YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5(1): 4876. doi: 10.1038/ncomms5876
    [8] 李蹊, 冯志勇, 冯建元, 等. 电磁涡旋及其在无线通信中的应用[J]. 电讯技术, 2015, 55(10): 1067–1073. doi: 10.3969/j.issn.1001-893x.2015.10.001

    LI Xi, FENG Zhiyong, FENG Jianyuan, et al. Electromagnetic vortex and its application in wireless communication[J]. Telecommunication Engineering, 2015, 55(10): 1067–1073. doi: 10.3969/j.issn.1001-893x.2015.10.001
    [9] CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar[M]. New York: Wiley-Interscience, 1991.
    [10] CHENG Q, ALOMAINY A, and HAO Y. Compressive millimeter-wave phased array imaging[J]. IEEE Access, 2016, 4: 9580–9588. doi: 10.1109/ACCESS.2016.2635118
    [11] LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714. doi: 10.1109/LAWP.2014.2376970
    [12] BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 764–767. doi: 10.1109/LAWP.2018.2814980
    [13] 洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109

    HONG Wen, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
    [14] 杜永兴, 仝宗俊, 秦岭, 等. 基于改进BP算法的电磁涡旋成像方法[J]. 雷达科学与技术, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012

    DU Yongxing, TONG Zongjun, QIN Ling, et al. Electromagnetic vortex imaging method based on improved BP algorithm[J]. Radar Science and Technology, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012
    [15] SHU Gaofeng, WANG Nan, WANG Wentao, et al. A novel vortex synthetic aperture radar imaging system: decreasing the pulse repetition frequency without increasing the antenna aperture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, in press. doi: 10.1109/TGRS.2021.3053650
    [16] WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814
    [17] BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Synthetic aperture radar interferometry based on vortex electromagnetic waves[J]. IEEE Access, 2019, 7: 82693–82700. doi: 10.1109/ACCESS.2019.2908209
    [18] MA Hui and LIU Hongwei. Waveform diversity-based generation of convergent beam carrying orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5487–5495. doi: 10.1109/TAP.2020.2981724
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1904
  • HTML全文浏览量:  1314
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-10-19
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回