基于多普勒扩展补偿的FDA-MIMO雷达运动目标检测

张顺生 刘美慧 王文钦

张顺生, 刘美慧, 王文钦. 基于多普勒扩展补偿的FDA-MIMO雷达运动目标检测[J]. 雷达学报, 2022, 11(4): 666–675. doi: 10.12000/JR22042
引用本文: 张顺生, 刘美慧, 王文钦. 基于多普勒扩展补偿的FDA-MIMO雷达运动目标检测[J]. 雷达学报, 2022, 11(4): 666–675. doi: 10.12000/JR22042
ZHANG Shunsheng, LIU Meihui, and WANG Wenqin. FDA-MIMO radar moving target detection based on Doppler spread compensation[J]. Journal of Radars, 2022, 11(4): 666–675. doi: 10.12000/JR22042
Citation: ZHANG Shunsheng, LIU Meihui, and WANG Wenqin. FDA-MIMO radar moving target detection based on Doppler spread compensation[J]. Journal of Radars, 2022, 11(4): 666–675. doi: 10.12000/JR22042

基于多普勒扩展补偿的FDA-MIMO雷达运动目标检测

DOI: 10.12000/JR22042
基金项目: 国家自然科学基金(62171092)
详细信息
    作者简介:

    张顺生(1980-),男,研究员,博士生导师,主要研究方向为雷达信号处理

    刘美慧(1997-),女,电子科技大学在读硕士研究生,主要研究方向为频控阵雷达运动目标检测

    王文钦(1979-),男,教授,博士生导师,主要研究方向为阵列处理及其在雷达、通信和电子对抗中的应用研究

    通讯作者:

    张顺生 zhangss@uestc.edu.cn

  • 责任主编:朱圣棋 Corresponding Editor: ZHU Shengqi
  • 中图分类号: TN958

FDA-MIMO Radar Moving Target Detection Based on Doppler Spread Compensation

Funds: The National Natural Science Foundation of China (62171092)
More Information
  • 摘要: 频控阵-多输入多输出(FDA-MIMO)雷达在检测运动目标时,由于发射阵元间的频率偏移与目标的速度耦合,因此在慢时间维出现严重的多普勒扩展,进一步造成各接收通道的信号能量无法相干累积,极大降低了系统的检测性能。针对此问题,该文提出一种基于多普勒扩展补偿的FDA-MIMO雷达运动目标检测算法。首先建立了FDA-MIMO雷达运动目标的回波模型,分析了频偏带来的多普勒扩展问题;然后在给出最大似然接收机模型的基础上,提出一种基于插值滤波的重采样算法来补偿FDA-MIMO雷达在检测运动目标时引起的多普勒扩展。仿真结果表明:该文所提算法在抑制多普勒扩展的同时,能够补偿子目标回波在距离维的跨单元走动,实现信号能量的相参累积。

     

  • 图  1  FDA-MIMO雷达发射接收阵列模型

    Figure  1.  FDA-MIMO radar transmit and receive array model

    图  2  频控阵-多输入多输出雷达最大似然接收机模型

    Figure  2.  Maximum likelihood receiver model for FDA-MIMO radar

    图  3  距离走动与多普勒扩展示意图

    Figure  3.  Schematic diagram of range migration and Doppler spread

    图  4  FDA-MIMO雷达运动目标检测流程图

    Figure  4.  The flowchart of moving target detection for FDA-MIMO radar

    图  5  接收阵元1的每个通道的多普勒频率中心

    Figure  5.  The Doppler frequency center of each channel of the first receiving array element

    图  6  接收阵元1的各通道信号在使用所提算法前后的距离-多普勒二维图

    Figure  6.  The range Doppler two-dimensional graph of each channel signal of the first receiving array element before and after using the algorithm

    图  7  未补偿多普勒扩展下的相干累积结果

    Figure  7.  Coherent accumulation results with uncompensated Doppler spread

    图  8  补偿多普勒扩展的相干累积结果

    Figure  8.  Coherent accumulation results with compensated Doppler spread

    图  9  频偏$ \Delta f = 10$ MHz 时,相干处理增益随相干处理间隔的变化曲线

    Figure  9.  When the frequency offset $ \Delta f = 10 $ MHz, the gain of coherent accumulation varies with the coherent processing interval

    图  10  相干处理间隔为96 ms时,处理增益随频偏的变化曲线

    Figure  10.  When the coherent processing time is 96 ms, the gain of coherent accumulation varies with frequency offset

    图  11  检测概率曲线图(${P_{{\rm{fa}}}} = 0.001$)

    Figure  11.  Detection probability graph (${P_{{\rm{fa}}}} = 0.001$)

  • [1] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 215–217.
    [2] 王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153–166. doi: 10.12000/JR18029

    WANG Wenqin, CHEN Hui, ZHENG Zhi, et al. Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2): 153–166. doi: 10.12000/JR18029
    [3] LAN Lan, XU Jingwei, LIAO Guisheng, et al. Suppression of mainbeam deceptive jammer with FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11584–11598. doi: 10.1109/TVT.2020.3014689
    [4] LIAO Yi, TANG Hu, CHEN Xiaolong, et al. Frequency diverse array beampattern synthesis with taylor windowed frequency offsets[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(11): 1901–1905. doi: 10.1109/LAWP.2020.3024710
    [5] WANG Wenqin, SO H C, and FARINA A. An overview on time/frequency modulated array processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 228–246. doi: 10.1109/JSTSP.2016.2627182
    [6] 熊杰. 频控阵发射波束形成及其应用方法研究[D]. [博士论文], 电子科技大学, 2018.

    XIONG Jie. Research on transmitting beamforming technology and its applications of frequency diverse array[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2018.
    [7] ZHU Yu, LIU Lei, LU Zheng, et al. Target detection performance analysis of FDA-MIMO radar[J]. IEEE Access, 2019, 7: 164276–164285. doi: 10.1109/ACCESS.2019.2943082
    [8] CHENG Jie, CHEN Hui, GUI Ronghua, et al. Persymmetric adaptive detector for FDA-MIMO radar[C]. 2020 IEEE Radar Conference. Florence, Italy, 2020: 1–5.
    [9] LAN L, MARINO A, AUBRY A, et al. Design of adaptive detectors for FDA-MIMO radar[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5.
    [10] LAN Lan, MARINO A, AUBRY A, et al. GLRT-based adaptive target detection in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 597–613. doi: 10.1109/TAES.2020.3028485
    [11] XU Jingwei, LIAO Guisheng, and SO H C. Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5352–5364. doi: 10.1109/TGRS.2016.2561308
    [12] XU Jian, WANG Wenqin, CUI Can, et al. Joint range, angle and Doppler estimation for FDA-MIMO radar[C]. 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 2018: 499–503.
    [13] 陈小龙, 陈宝欣, 黄勇, 等. 频控阵雷达空距频聚焦信号处理方法[J]. 雷达学报, 2018, 7(2): 183–193. doi: 10.12000/JR18018

    CHEN Xiaolong, CHEN Baoxin, HUANG Yong, et al. Frequency diverse array radar signal processing via Space-Range-Doppler focus (SRDF) method[J]. Journal of Radars, 2018, 7(2): 183–193. doi: 10.12000/JR18018
    [14] 程婕, 王文钦, 侯宇典, 等. 基于FDA雷达的多径干扰抑制及目标检测[J]. 信号处理, 2022, 38(1): 28–34. doi: 10.16798/j.issn.1003-0530.2022.01.004

    CHENG Jie, WANG Wenqin, HOU Yudian, et al. Multipath jamming suppression and target detection based on FDA radar[J]. Journal of Signal Processing, 2022, 38(1): 28–34. doi: 10.16798/j.issn.1003-0530.2022.01.004
    [15] HUANG Bang, WANG Wenqin, BASIT A, et al. Bayesian detection in Gaussian clutter for FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2655–2667. doi: 10.1109/TVT.2021.3139894
    [16] HUANG Bang, BASIT A, GUI Ronghua, et al. Adaptive moving target detection without training data for FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 220–232. doi: 10.1109/TVT.2021.3126781
    [17] 桂荣华. 频控阵雷达自适应处理关键技术研究[D]. [博士论文], 电子科技大学, 2020.

    GUI Ronghua. Research on adaptive processing technology for frequency diverse array radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
    [18] CHEN Xiaolong, GUAN Jian, and HE You. High resolution extraction of radar micro-Doppler signature using sparse time-frequency distribution[C]. 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017: 1–4.
    [19] CHEN Xiaolong, CHEN Baoxin, GUAN Jian, et al. Space-range-Doppler focus-based low-observable moving target detection using frequency diverse array MIMO radar[J]. IEEE Access, 2018, 6: 43892–43904. doi: 10.1109/ACCESS.2018.2863745
    [20] XU Jingwei, LIAO Guisheng, HUANG Lei, et al. Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 973–984. doi: 10.1109/TSP.2016.2628340
    [21] GUI Ronghua, WANG Wenqin, CUI Can, et al. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 200–214. doi: 10.1109/TSP.2017.2764860
    [22] GUI Ronghua, WANG Wenqin, and SHAO Huaizong. General receiver design for FDA radar[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma, USA, 2018: 280–285.
    [23] 林洋, 张顺生, 王文钦, 等. LFM正交调制的FDA-MIMO雷达运动目标检测[J]. 信号处理, 2019, 35(11): 1888–1894. doi: 10.16798/j.issn.1003-0530.2019.11.014

    LIN Yang, ZHANG Shunsheng, WANG Wenqin, et al. FDA-MIMO radar moving target detection with LFM orthogonal modulation[J]. Journal of Signal Processing, 2019, 35(11): 1888–1894. doi: 10.16798/j.issn.1003-0530.2019.11.014
  • 加载中
图(11)
计量
  • 文章访问数:  1305
  • HTML全文浏览量:  887
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 修回日期:  2022-05-25
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回