非合作双基地雷达参考通道多径影响和抑制方法研究

王雪松 潘嘉蒙 陈龙 鲍庆龙 陈健

王雪松, 潘嘉蒙, 陈龙, 等. 非合作双基地雷达参考通道多径影响和抑制方法研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25155
引用本文: 王雪松, 潘嘉蒙, 陈龙, 等. 非合作双基地雷达参考通道多径影响和抑制方法研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25155
WANG Xuesong, PAN Jiameng, CHEN Long, et al. Multipath effects and suppression in reference channels of passive bistatic radar[J]. Journal of Radars, in press. doi: 10.12000/JR25155
Citation: WANG Xuesong, PAN Jiameng, CHEN Long, et al. Multipath effects and suppression in reference channels of passive bistatic radar[J]. Journal of Radars, in press. doi: 10.12000/JR25155

非合作双基地雷达参考通道多径影响和抑制方法研究

DOI: 10.12000/JR25155 CSTR: 32380.14.JR25155
基金项目: 国家自然科学基金(62201594, 62201588)
详细信息
    作者简介:

    王雪松,硕士生,主要研究方向为非合作双基地雷达杂波抑制

    潘嘉蒙,博士,讲师,主要研究方向为无源探测、目标跟踪和雷达信号处理

    陈 龙,硕士生,主要研究方向为非合作双基地雷达信号同步

    鲍庆龙,博士,副教授,主要研究方向为雷达数据采集、无源探测和雷达信号处理

    陈 健,博士,讲师,主要研究方向为雷达抗干扰与信号处理

    通讯作者:

    潘嘉蒙panjiameng@nudt.edu.cn

    鲍庆龙 baoqinglong@nudt.edu.cn

  • 责任主编:万显荣 Corresponding Editor: WAN Xianrong
  • 中图分类号: TN95

Multipath effects and Suppression in Reference Channels of Passive Bistatic Radar

Funds: The National Natural Science Foundation of China (62201594, 62201588)
More Information
  • 摘要: 非合作双基地雷达凭借其抗隐身、抗干扰等特性,在民用与军用领域具有重要应用价值。然而在实际应用中,不可控雷达辐射源及复杂地理环境导致参考信号中不可避免地混入多径干扰与噪声污染,致使参考信号与回波信号互相关处理检测性能显著劣化于理想最优匹配滤波器,并产生固定虚假目标,成为制约非合作双基地雷达实战应用的瓶颈问题。该文针对该问题展开系统性研究:首先分析了参考通道存在多径和噪声时的互相关结果,定量分析了参考通道中多径强度和噪声功率与检测概率的映射关系。其次针对线性调频信号,提出了一种基于去斜解调的参考通道多径抑制算法,该算法利用线性调频信号特性,将不同时延的多径分量转化为显著的频率偏移,相同多径分量相较于现有主流分数阶傅里叶变化产生更大频移效果,能以显著降低滤波器阶数实现相当的抑制效果,得益于更彻底的信号分离度,相较于常规算法该算法在整体上能更有效地提升目标检测概率。在强多径淹没直达波的实际外场试验场景下,实测数据处理结果验证了所提方法在消除虚假目标、修正距离偏移和提升目标检测概率方面的有效性。

     

  • 图  1  双基地无源雷达的几何结构图

    Figure  1.  Geometric structure diagram of bistatic passive radar

    图  2  存在相位差的相参积累结果

    Figure  2.  The result of coherent integration with phase difference

    图  3  CFAR遮蔽“扩展”现象

    Figure  3.  CFAR masking extension

    图  4  参考通道信干比对检测概率的影响

    Figure  4.  The effect of reference channel signal-to- interference ratio on detection probability

    图  5  去斜解调和分数阶傅里叶变换处理流程对比

    Figure  5.  Comparison of Dechirp and FrFT processing

    图  6  基于去斜解调的参考信号多径抑制算法流程图

    Figure  6.  Dechirping-based multipath suppression algorithm flowchart for reference signals

    图  7  参考通道处理前的结果

    Figure  7.  Results before reference channel processing

    图  8  去斜解调的参考信号多径抑制结果和匹配滤波器的检测结果

    Figure  8.  Reference signal multipath suppression results of the Dechirp and detection results of the Matched Filter

    图  9  不同滤波器阶数的检测概率

    Figure  9.  Detection probability results for different filter orders

    图  10  性能影响分析

    Figure  10.  Performance impact analysis

    图  11  实验场景示意图

    Figure  11.  Schematic diagram of the experimental scenario

    图  12  实测数据不同域的结果

    Figure  12.  Results from different domains of measured data

    图  13  多径抑制前后的自相关和互相关结果

    Figure  13.  Autocorrelation and Cross-Correlation results before and after multipath suppression

    图  14  本文算法处理前后多个脉冲目标检测结果

    Figure  14.  Target detection results of multiple pulses before and after processing by the proposed algorithm

    表  1  目标检测性能仿真参数

    Table  1.   Target detection performance simulation parameters

    参数数值参数数值
    脉宽100 μs带宽5 MHz
    重复周期1 ms采样频率20 MHz
    参考通道直达波功率40 dBm, 25 dBm监视通道直达波功率20 dBm
    参考通道多径时延范围(0.2 μs, 1.5 μs]监视通道杂波总功率($ \sum\nolimits_{i = 0}^L {\beta _i^2} $)10 dBm
    参考通道多径数量10监视通道目标回波功率–20 dBm
    参考通道中信干比[0 dB, 40 dB]监视通道目双基地时延140 μs
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Simulation parameters

    参数 数值 参数 数值
    脉冲宽度 30 μs 目标回波信噪比 –15 dB, –5 dB
    重复周期 100 μs 目标双基地延时 40 μs, 45 μs
    调频带宽 5 MHz 多径延时范围 (0 μs, 10 μs]
    参考通道直达波信噪比 40 dB 参考通道多径数量 10
    载频 0 MHz 参考通道信号信干比 10 dB
    CFAR训练单元 60 监视通道直达波信噪比 20 dB
    CFAR保护单元 8 采样频率 20 MHz
    滤波器阶数 71 CFAR虚警概率 $1 \times {10^{ - 6}}$
    下载: 导出CSV
  • [1] 郁成阳, 周婉婷, 徐海洲, 等. 非合作式双基地雷达系统设计与验证[J]. 雷达科学与技术, 2024, 22(2): 119–125. doi: 10.3969/j.issn.1672-2337.2024.02.001.

    YU Chengyang, ZHOU Wanting, XU Haizhou, et al. Non-cooperative bistatic radar system design and verification[J]. Radar Science and Technology, 2024, 22(2): 119–125. doi: 10.3969/j.issn.1672-2337.2024.02.001.
    [2] HORLBECK M, SCHEINER B, and WEIGEL R. Overview of passive radar and its receiver architectures to enhance safety in civil aviation: A comprehensive analysis of history, principles, and performance optimization strategies[J]. IEEE Microwave Magazine, 2024, 25(5): 53–71. doi: 10.1109/MMM.2024.3363991.
    [3] 王森, 鲍庆龙, 潘嘉蒙, 等. 基于改进概率假设密度滤波器的非合作双基地雷达目标跟踪[J]. 系统工程与电子技术, 2023, 45(7): 2002–2009. doi: 10.12305/j.issn.1001-506X.2023.07.10.

    WANG Sen, BAO Qinglong, PAN Jiameng, et al. Target tracking for noncooperative bistatic radar based on improved probability hypothesis density filter[J]. Systems Engineering and Electronics, 2023, 45(7): 2002–2009. doi: 10.12305/j.issn.1001-506X.2023.07.10.
    [4] MAZUREK G, KULPA K, MALANOWSKI M, et al. Experimental seaborne passive radar[J]. Sensors, 2021, 21(6): 2171. doi: 10.3390/s21062171.
    [5] 周昕, 易建新, 万显荣, 等. 基于低轨卫星机会照射源的无人机目标前向散射探测方法与实验[J]. 信号处理, 2024, 40(12): 2105–2115. doi: 10.12466/xhcl.2024.12.001.

    ZHOU Xin, YI Jianxin, WAN Xianrong, et al. Methods and experiments for forward scattering detection of UAV targets based on opportunistic illumination from low-orbit satellites[J]. Journal of Signal Processing, 2024, 40(12): 2105–2115. doi: 10.12466/xhcl.2024.12.001.
    [6] QIU Yanlong, ZHANG Jiaxi, CHEN Yanjiao, et al. Radar2: Passive spy radar detection and localization using COTS mmWave radar[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2810–2825. doi: 10.1109/TIFS.2023.3268880.
    [7] TAYLOR A and POULLIN D. Drone detection using 4G-LTE-based passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(4): 8804–8820. doi: 10.1109/TAES.2025.3545000.
    [8] GOMEZ-DEL-HOYO P and SAMCZYNSKI P. Starlink-based passive radar for Earth's surface imaging: First experimental results[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13949–13965. doi: 10.1109/JSTARS.2024.3437179.
    [9] HUANG Chuan, LI Zhongyu, LOU Mingyue, et al. BeiDou-based passive radar vessel target detection: Method and experiment via long-time optimized integration[J]. Remote Sensing, 2021, 13(19): 3933. doi: 10.3390/rs13193933.
    [10] MAKSYMIUK R, GOMEZ DEL HOYO P, ABRATKIEWICZ K, et al. 5G‐based passive radar on a moving platform—detection and imaging[J]. IET Radar, Sonar & Navigation, 2024, 18(12): 2414–2426. doi: 10.1049/rsn2.12559.
    [11] HUANG Chuan, LI Zhongyu, AN Hongyang, et al. Maritime moving target detection using multiframe recursion association in GNSS-based passive radar[J]. IEEE Sensors Journal, 2024, 24(5): 6380–6391. doi: 10.1109/JSEN.2023.3343924.
    [12] LIU Jun, LI Hongbin, and HIMED B. On the performance of the cross-correlation detector for passive radar applications[J]. Signal Processing, 2015, 113: 32–37. doi: 10.1016/j.sigpro.2015.01.006.
    [13] 万显荣, 张德磊, 柯亨玉, 等. 全球性数字广播高频外辐射源雷达参考信号重构[J]. 系统工程与电子技术, 2012, 34(11): 2231–2236. doi: 10.3969/j.issn.1001-506X.2012.11.08.

    WAN Xianrong, ZHANG Delei, KE Hengyu, et al. Reference signal reconstruction of HF passive bistatic radar based on DRM digital broadcasting[J]. Systems Engineering and Electronics, 2012, 34(11): 2231–2236. doi: 10.3969/j.issn.1001-506X.2012.11.08.
    [14] MAHFOUDIA O, HORLIN F, and NEYT X. Performance analysis of the reference signal reconstruction for DVB-T passive radars[J]. Signal Processing, 2019, 158: 26–35. doi: 10.1016/j.sigpro.2018.12.016.
    [15] ZUO Luo, WANG Jun, ZHAO Te, et al. A joint low-rank and sparse method for reference signal purification in DTMB-based passive bistatic radar[J]. Sensors, 2021, 21(11): 3607. doi: 10.3390/s21113607.
    [16] 李纪传. 无源雷达杂波对消关键技术及目标检测方法研究[D]. [博士论文], 中国科学院大学,2015.

    LI Jichuan. Research on Key Technology of Clutter Cancellation and Moving Target Detection Algorithm of Passive Radar[D].[Ph.D. dissertation], University of Chinese Academy of Sciences.2015.
    [17] 朱家兵,洪一. 基于复倒谱技术的无源雷达直达波提纯方法[J]. 现代雷达, 2007(08): 75–78. doi: 10.16592/j.cnki.1004-7859.2007.08.022.

    ZHU Jiabing, HONG Yi. A Direct-path-wave Purified Approach to Passive Radar Based on Cepstrum Technique[J]. Modern Radar, 2007(08): 75–78. doi: 10.16592/j.cnki.1004-7859.2007.08.022.
    [18] XING Zhe and GAO Yong. A modulation classification algorithm for multipath signals based on cepstrum[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4742–4752. doi: 10.1109/TIM.2019.2955535.
    [19] 陈刚, 王俊, 王珏, 等. 外辐射源雷达参考信号提纯方法[J]. 系统工程与电子技术, 2018, 40(1): 45–49. doi: 10.3969/j.issn.1001-506X.2018.01.07.

    CHEN Gang, WANG Jun, WANG Jue, et al. Reference signal purifying method in passive bistatic radar[J]. Systems Engineering and Electronics, 2018, 40(1): 45–49. doi: 10.3969/j.issn.1001-506X.2018.01.07.
    [20] SONG Jie, HE You, GUAN Jian, et al. Direct wave reconstruction of non-cooperative bistatic pulse radar using modified CMA+MMA algorithm[C]. 2009 IET International Radar Conference, Guilin, China, 2009: 1–5, doi: 10.1049/cp.2009.0206.
    [21] CARDINALI R, COLONE F, LOMBARDO P, et al. Multipath cancellation on reference antenna for passive radar which exploits FM transmission[C]. 2007 IET International Conference on Radar Systems, Edinburgh, UK, 2007: 1–5, doi: 10.1049/cp:20070668.
    [22] JIN Hongbin, LUO Weilin, LI Hao, et al. Underdetermined blind source separation of radar signals based on genetic annealing algorithm[J]. The Journal of Engineering, 2022, 2022(3): 261–273. doi: 10.1049/tje2.12108.
    [23] ABRATKIEWICZ K, SAMCZYŃSKI P J, RYTEL-ANDRIANIK R, et al. Multipath interference removal in receivers of linear frequency modulated radar pulses[J]. IEEE Sensors Journal, 2021, 21(17): 19000–19012. doi: 10.1109/JSEN.2021.3087319.
    [24] KANONA M E A, ALIAS M Y, HASSAN M K, et al. A machine learning based vehicle classification in forward scattering radar[J]. IEEE Access, 2022, 10: 64688–64700. doi: 10.1109/ACCESS.2022.3183127.
    [25] 吴贞宇, 夏厚培. 基于HAF的混叠多分量LFM信号时域参数测量[J]. 电子科技, 2021, 34(4): 6–11. doi: 10.16180/j.cnki.issn1007-7820.2021.04.002.

    WU Zhenyu and XIA Houpei. Time domain parameter measurement of aliased multi-component LFM signals based on HAF[J]. Electronic Science and Technology, 2021, 34(4): 6–11. doi: 10.16180/j.cnki.issn1007-7820.2021.04.002.
    [26] LU Zhenkun, LI Shaohang, QIU Ji, et al. An efficient method for parameter estimation and separation of multi-component LFM signals[J]. Signal Processing, 2023, 207: 108964. doi: 10.1016/j.sigpro.2023.108964.
    [27] ABRATKIEWICZ K and SAMCZYŃSKI P. An adaptive spectrogram and accelerogram algorithm for electronic warfare applications[C]. 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 2020: 530–535. doi: 10.1109/RADAR42522.2020.9114800.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-18
  • 修回日期:  2025-09-18

目录

    /

    返回文章
    返回