一种海洋涡旋SAR图像仿真方法

王宇航 杨敏 种劲松

王宇航, 杨敏, 种劲松. 一种海洋涡旋SAR图像仿真方法[J]. 雷达学报, 2019, 8(3): 382–390. doi: 10.12000/JR18052
引用本文: 王宇航, 杨敏, 种劲松. 一种海洋涡旋SAR图像仿真方法[J]. 雷达学报, 2019, 8(3): 382–390. doi: 10.12000/JR18052
WANG Yuhang, YANG Min, and CHONG Jinsong. SAR image simulation method for oceanic eddies[J]. Journal of Radars, 2019, 8(3): 382–390. doi: 10.12000/JR18052
Citation: WANG Yuhang, YANG Min, and CHONG Jinsong. SAR image simulation method for oceanic eddies[J]. Journal of Radars, 2019, 8(3): 382–390. doi: 10.12000/JR18052

一种海洋涡旋SAR图像仿真方法

DOI: 10.12000/JR18052
基金项目: 国家部委基金,微波成像技术国家重点实验室基金(CXJJ_15S119)
详细信息
    作者简介:

    王宇航(1992–),女,博士生,中国科学院电子学研究所。研究方向为SAR海洋遥感探测与应用。E-mail: iecas_wang@126.com

    杨敏:杨   敏(1988–),女,硕士。2013年在中国科学院电子学研究所获得硕士学位。研究方向为SAR海洋遥感探测与应用。E-mail: minyang993@126.com

    种劲松(1969–),女,博士,研究员,博士生导师。2000年在北京航空航天大学宇航学院获得硕士学位,2003年在中国科学院研究生院获得博士学位,现担任中国科学院电子学研究所研究员。研究方向为SAR海洋微波遥感。E-mail: iecas_chong@163.com

    通讯作者:

    种劲松  iecas_chong@163.com

  • 中图分类号: TN957.52

SAR Image Simulation Method for Oceanic Eddies

Funds: The National Ministries Foundation, The Foundation of National Key Laboratory of Science and Technology on Microwave Imaging (CXJJ_15S119)
More Information
  • 摘要: 海洋涡旋对海洋热循环起着关键作用,是海洋科学研究中的一个重要分支。合成孔径雷达(Synthetic Aperture Radar, SAR)为海洋涡旋的观测和研究提供了大量的图像数据,但是涡旋在SAR成像时会受到各种海洋环境因素的影响,难以解译涡旋SAR图像特征。仿真SAR图像可以用于研究涡旋的特征,但是目前极少有关于涡旋SAR图像仿真方法的研究。为了更好地解译SAR图像中的涡旋特征,该文提出了一种涡旋SAR图像仿真方法。首先,基于流体力学中典型的Burgers-Rott涡旋模型,建立涡旋2维表面流场;然后,利用SAR海洋成像仿真模型,仿真给定涡旋2维流场、海面风场以及雷达系统参数下的涡旋SAR图像。该文针对气旋式涡旋与反气旋式涡旋进行了仿真实验,并建立了仿真涡旋SAR图像的相似度评价标准。实验结果表明,仿真的涡旋SAR图像与真实星载涡旋SAR图像能够较好地吻合,验证了方法的有效性。

     

  • 图  1  涡旋SAR图像仿真方法流程图

    Figure  1.  Flow chart of the simulation method of SAR eddy image

    图  2  SAR海洋成像仿真模型示意图[22]

    Figure  2.  Schematic diagram of oceanic SAR imagery simulation model[22]

    图  3  中国东海海域获取的ERS-2 SAR图像,获取时间为2009.08.19, 02:23:50 UTC

    Figure  3.  ERS-2 SAR image of the East China Sea obtained on August 19, 2009 at 02:23:50 UTC

    图  4  从方框1处截取的涡旋SAR图像

    Figure  4.  Enlargement of the eddy in Frame 1

    图  5  相同参数下仿真SAR图像与ERS-2 SAR图像对比图

    Figure  5.  Comparison of simulated SAR image and ERS-2 SAR image under the same parameters

    图  6  仿真SAR图像与ERS-2 SAR图像涡旋信息提取

    Figure  6.  Eddy information extraction of simulated SAR image and ERS-2 SAR image

    图  7  吕宋海峡获取的ENVISAT-1 ASAR图像,获取时间为2010.06.11, 01:51:48 UTC

    Figure  7.  ENVISAT-1 ASAR image of the Luson Strait obtained on June 11, 2010 at 01:51:48 UTC

    图  8  方框2处截取的涡旋SAR图像

    Figure  8.  Enlargement of the eddy in Frame 2

    图  9  相同参数下仿真SAR图像与ENVISAT-1 ASAR图像对比图

    Figure  9.  Comparison of simulated SAR image and ENVISAT-1 ASAR image under the same parameters

    图  10  仿真SAR图像与ENVISAT-1 ASAR图像涡旋信息提取

    Figure  10.  Eddy information extraction of simulated SAR image and ENVISAT-1 ASAR image

    表  1  ERS-2 SAR参数

    Table  1.   SAR parameters of ERS-2

    参数数值
    极化方式VV
    波段C
    入射角23.0°
    平台高度780 km
    平台速度7500 m/s
    下载: 导出CSV

    表  2  涡旋信息提取结果

    Table  2.   Results of eddy information extraction

    SAR图像涡旋中心位置涡旋直径涡旋边缘长度
    仿真SAR图像(116,75)18.9 km35.7 km
    真实SAR图像(113,71)18.7 km35.4 km
    绝对/相对误差(3,4)/—0.2 km/0.0110.3 km/0.008
    下载: 导出CSV

    表  3  ENVISAT-1 ASAR参数

    Table  3.   ASAR parameters of ENVISAT-1

    参数数值
    极化方式HH
    波段C
    入射角26.7°
    平台高度800 km
    平台速度7455 m/s
    下载: 导出CSV

    表  4  涡旋信息提取结果

    Table  4.   Results of eddy information extraction

    SAR图像涡旋中心位置涡旋直径涡旋边缘尺寸
    仿真SAR图像(144,78)24.0 km49.4 km
    真实SAR图像(147,81)23.9 km49.7 km
    绝对/相对误差(3,3)/—0.1 km/0.0040.3 km/0.006
    下载: 导出CSV
  • [1] KARIMOVA S. Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data[J]. Advances in Space Research, 2012, 50(8): 1107–1124. doi: 10.1016/j.asr.2011.10.027
    [2] IVANOV A Y and GINZBURG A I. Oceanic eddies in synthetic aperture radar images[J]. Journal of Earth System Science, 2002, 111(3): 281–295. doi: 10.1007/BF02701974
    [3] KARIMOVA S and GADE M. Improved statistics of sub-mesoscale eddies in the Baltic Sea retrieved from SAR imagery[J]. International Journal of Remote Sensing, 2016, 37(10): 2394–2414. doi: 10.1080/01431161.2016.1145367
    [4] XU G J, YANG J S, DONG C M, et al. Statistical study of submesoscale eddies identified from synthetic aperture radar images in the Luzon Strait and adjacent seas[J]. International Journal of Remote Sensing, 2015, 36(18): 4621–4631. doi: 10.1080/01431161.2015.1084431
    [5] TAVRI A, SINGHA S, LEHNER S, et al. Observation of sub-mesoscale eddies over Baltic Sea using TerraSAR-X and Oceanographic data[C]. Proceedings of Living Planet Symposium 2016, Prague, Czech Republic, 2016.
    [6] LYZENGA D and WACKERMAN C. Detection and classification of ocean eddies using ERS-1 and aircraft SAR images[C]. Proceedings of the 3rd ERS Symposium on Space at the Service of our Environment, Florence, Italy, 1997: 1267–1271.
    [7] MITNIK L, DUBINA V, and LOBANOV V. Cold season features of the Japan Sea coastal zone revealed by ERS SAR[C]. Proceedings of ERS-Envisat Symposium " Looking Down to Earth in the New Millennium”, Noordwijk, Netherlands, 2000: 4232–4242.
    [8] LAVROVA O Y and MITYAGINA M I. Manifestation specifics of hydrodynamic processes in satellite images of intense phytoplankton bloom areas[J]. Izvestiya Atmospheric and Oceanic Physics, 2016, 52(9): 974–987. doi: 10.1134/S0001433816090176
    [9] 杨敏, 种劲松. 基于对数螺旋线边缘拟合的SAR图像漩涡信息提取方法[J]. 雷达学报, 2013, 2(2): 226–233. doi: 10.3724/SP.J.1300.2013.13004

    YANG Min and CHONG Jing-song. A method based on logarithmic spiral edge fitting for information extraction of eddy in the SAR image[J]. Journal of Radars, 2013, 2(2): 226–233. doi: 10.3724/SP.J.1300.2013.13004
    [10] DRESCHLER-FISCHER L, LAVROVA O, SEPPKE B, et al. Detecting and tracking small scale eddies in the black sea and the Baltic Sea using high-resolution Radarsat-2 and TerraSAR-X imagery (DTeddie)[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1214–1217. DOI: 10.1109/IGARSS.2014.6946650.
    [11] KARIMOVA S. An approach to automated spiral eddy detection in SAR images[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, Texas, USA, 2017: 743–746. DOI: 10.1109/IGARSS.2017.8127059.
    [12] HUANG D M, DU Y L, HE Q, et al. DeepEddy: A simple deep architecture for mesoscale oceanic eddy detection in SAR images[C]. Proceedings of the 14th IEEE International Conference on Networking, Sensing and Control, Calabria, Italy, 2017: 673–678. DOI: 10.1109/ICNSC.2017.8000171.
    [13] 于祥祯. 顺轨干涉SAR对海洋表面流场监测的若干问题研究[D]. [博士论文], 中国科学院研究生院, 2012: 30–34.

    YU Xiang-zhen. Study on some problems of ocean surface current detection by along-track interferometric SAR[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2012: 30–34.
    [14] ROMEISER R, ALPERS W, and WISMANN V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data[J]. Journal of Geophysical Research, 1997, 102(C11): 25237–25250. doi: 10.1029/97JC00190
    [15] ROMEISER R and ALPERS W. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography[J]. Journal of Geophysical Research, 1997, 102(C11): 25251–25267. doi: 10.1029/97JC00191
    [16] ROMEISER R, SEIBT-WINCKLER A, HEINEKE M, et al. Validation of current and bathymetry measurements in the German Bight by airborne along-track interferometric SAR[C]. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1822–1824. DOI: 10.1109/IGARSS.2002.1026266.
    [17] OUYANG Y, CHONG J S, WU Y R, et al. Simulation studies of internal waves in SAR images under different SAR and wind field conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1734–1743. doi: 10.1109/TGRS.2010.2087384
    [18] 朱克勤, 彭杰. 高等流体力学[M]. 北京: 科学出版社, 2017: 132–138.

    ZHU Ke-qin and PENG Jie. Advanced Fluid Mechanics[M]. Beijing: Science Press, 2017: 132–138.
    [19] BURGERS J M. A mathematical model illustrating the theory of turbulence[J]. Advances in Applied Mechanics, 1948, 1: 171–199. doi: 10.1016/S0065-2156(08)70100-5
    [20] ROTT N. On the viscous core of a line vortex[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1958, 9(5/6): 543–553. doi: 10.1007/BF02424773
    [21] LONGUET-HIGGINS M S and STEWART R W. Radiation stresses in water waves; a physical discussion, with applications[J]. Deep Sea Research and Oceanographic Abstracts, 1964, 11(4): 529–562. doi: 10.1016/0011-7471(64)90001-4
    [22] 余颖, 王小青, 朱敏慧, 等. 基于二阶散射的海面三尺度雷达后向散射模型[J]. 电子学报, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022

    YU Ying, WANG Xiao-qing, ZHU Min-hui, et al. Three-scale radar backscattering model of the ocean surface based on second-order scattering[J]. Acta Electronica Sinica, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022
    [23] WHITHAM G B. A general approach to linear and non-linear dispersive waves using a Lagrangian[J]. Journal of Fluid Mechanics, 1965, 22(2): 273–283. doi: 10.1017/S0022112065000745
    [24] ALPERS W R, ROSS D B, and RUFENACH C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research, 1981, 86(C7): 6481–6498. doi: 10.1029/JC086iC07p06481
    [25] ROMEISER R and THOMPSON D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 446–458. doi: 10.1109/36.823940
    [26] ROBINSON I S. Discovering the Ocean from Space: The Unique Applications of Satellite Oceanography[M]. Chichester, UK: Springer-Praxis, 2010: 76–78.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  2858
  • HTML全文浏览量:  1347
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-05
  • 修回日期:  2018-09-11
  • 网络出版日期:  2019-06-01

目录

    /

    返回文章
    返回