Joint Design of Variable-pulse-width Radar Pulse Trains and Receive Mismatched Filtering
-
摘要: 低副瓣特性的波形是保证雷达基本探测性能的基础,设计具有距离、速度一维或二维低副瓣特性的波形是雷达领域的一个重要问题。针对相干脉冲串的速度维副瓣抑制问题,该文提出了一种变脉宽脉冲串与接收失配滤波协同设计方法。该方法利用正值、对称窗函数直接构造脉冲宽度序列和接收端加权序列,可将窗函数幅度谱的低副瓣和3 dB主瓣展宽特性转化为相干脉冲串接收失配滤波输出的特性。理论分析表明,相比单纯用窗函数作接收端失配加权,这种发射信号变脉宽结合接收端失配加权的方法具有更小的失配信噪比损失。文中仿真分析了不同窗函数和最小脉宽约束对信噪比损失的影响和强目标干扰下的弱目标检测性能,验证了所提收发协同设计方法的优点。Abstract: Low-sidelobe waveforms are fundamental for ensuring the basic detection performance of radars. Designing waveforms with low sidelobes in the range dimension, the velocity dimension, or both, remains a major challenge in radar research. To address the issue of sidelobe suppression in the velocity dimension for coherent pulse trains, this paper proposes a joint design method of variable-pulse-width pulse trains and receive mismatched filtering. The proposed method uses a symmetric positive window function to directly construct both the pulse width sequence and the receive weighting sequence. As a result, the characteristics of the window function’s amplitude spectrum, including low sidelobes and the broadening of the 3-dB mainlobe, are transferred into the mismatched filtering output of the coherent pulse train. Theoretical analysis shows that the proposed method incurs a smaller mismatched Signal-to-Noise Ratio (SNR) loss than when the window function is applied solely for receive mismatched filtering. The effects of window functions and the minimum pulse-width constraint on SNR loss and weak target detection performance under strong target interference are analyzed through simulations, illustrating the advantages of the proposed joint transceiver design method.
-
Key words:
- Radar waveform diversity /
- Waveform design /
- Window function /
- Pulse width /
- Mismatched filtering
-
表 1 脉冲串基本参数
Table 1. Parameters of pulse trains
参数 取值 载频${f_{\rm C}}$ 3 GHz 脉冲间隔${T_{{\mathrm{R}}}}$ 10 μs 脉冲数N 1024 最大脉宽$ {T_{\max }} $ 1 μs 表 2 强弱混合多目标场景中的目标参数
Table 2. Target parameters in scene with mixed strong and weak targets
目标序号 径向速度(m/s) 快时间匹配滤波输入信噪比(dB) 1 –216 10 2 –188 –5 3 –132 25 4 –79 0 5 –16 20 6 36 –10 7 84 10 8 136 15 9 192 –10 10 224 15 -
[1] BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2–42. doi: 10.1109/MAES.2016.160071. [2] BERESTESKY P and ATTIA E H. Sidelobe leakage reduction in random phase diversity radar using coherent CLEAN[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2426–2435. doi: 10.1109/TAES.2018.2888652. [3] LONG Xingwang, LI Kun, TIAN Jing, et al. Ambiguity function analysis of random frequency and PRI agile signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 382–396. doi: 10.1109/TAES.2020.3016851. [4] LONG Xingwang, WU Wenhao, LI Kun, et al. Multi-timeslot wide-gap frequency-hopping RFPA signal and its sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 634–649. doi: 10.1109/TAES.2022.3188594. [5] YE Hongyu, WU Wenhao, LONG Xingwang, et al. Distant sidelobe suppression for multi-timeslot wide-gap frequency-hopping RFPA radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4214–4228. doi: 10.1109/TAES.2024.3375277. [6] 孙进平, 白霞, 王国华. 雷达波形设计与处理导论[M]. 北京: 人民邮电出版社, 2022: 83–84.SUN Jinping, BAI Xia, and WANG Guohua. Introduction to Radar Waveform Design and Processing[M]. Beijing: Posts & Telecom Press, 2022: 83–84. [7] HARNETT L A and BLUNT S D. Least-squares optimal mismatched doppler processing[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–5. doi: 10.1109/RADAR.2019.8835508. [8] HERMAN M A and STROHMER T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275–2284. doi: 10.1109/TSP.2009.2014277. [9] MAUD A R M and BELL M R. Sparse recovery and resolution of pulse-Doppler radar[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 0824–0828. doi: 10.1109/RADAR.2014.6875704. [10] TAN Xing, ROBERTS W, LI Jian, et al. Range-Doppler imaging via a train of probing pulses[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 1084–1097. doi: 10.1109/TSP.2008.2010010. [11] AUBRY A, DE MAIO A, HUANG Yongwei, et al. Robust design of radar Doppler filters[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 5848–5860. doi: 10.1109/TSP.2016.2576423. [12] BLUNT S D, HARNETT L A, RAVENSCROFT B, et al. Implications of diversified Doppler for random PRI radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3811–3834. doi: 10.1109/TAES.2022.3231844. [13] CHANG R J, JONES C C, OWEN J W, et al. Gradient-based optimization of pseudo-random PRI staggering[J]. IEEE Transactions on Radar Systems, 2023, 1: 249–263. doi: 10.1109/TRS.2023.3295808. [14] SHI Jieming, CHENG Ziyang, LI Jun, et al. Pulse interval optimization for Doppler ambiguity clutter suppression in missile-borne STAP radar[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3506205. doi: 10.1109/LGRS.2024.3371438. [15] FAN Tao, YU Xianxiang, GAN Na, et al. Transmit-receive design for airborne radar with nonuniform pulse repetition intervals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4067–4084. doi: 10.1109/TAES.2021.3090915. [16] PRABHU K M M. Window Functions and Their Applications in Signal Processing[M]. Boca Raton, USA: CRC Press, 2014: 88–116. [17] YAMAOKA T and OSHIMA T. Sidelobe reduction for window functions by multiplication of cosine-sum windows[J]. IEEE Access, 2025, 13: 35588–35596. doi: 10.1109/ACCESS.2025.3544540. [18] DUDA K, ZIELIŃSKI T P, and BARCZENTEWICZ S H. Perfectly flat-top and equiripple flat-top cosine windows[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(7): 1558–1567. doi: 10.1109/TIM.2016.2534398. [19] GAO Yongchan, AUBRY A, DE MAIO A, et al. Adaptive target separation detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 293–309. doi: 10.1109/TAES.2020.3018898. [20] DIAO P S, ALVES T, POUSSOT B, et al. A review of radar detection fundamentals[J]. IEEE Aerospace and Electronic Systems Magazine, 2024, 39(9): 4–24. doi: 10.1109/MAES.2022.3177395. -