微波光子宽带涡旋电磁波雷达研究进展及应用

孙冠群 张方正 潘时龙

孙冠群, 张方正, 潘时龙. 微波光子宽带涡旋电磁波雷达研究进展及应用[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25263
引用本文: 孙冠群, 张方正, 潘时龙. 微波光子宽带涡旋电磁波雷达研究进展及应用[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25263
SUN Guanqun, ZHANG Fangzheng, and PAN Shilong. Research advances and applications of microwave photonic broadband vortex electromagnetic wave radar[J]. Journal of Radars, in press. doi: 10.12000/JR25263
Citation: SUN Guanqun, ZHANG Fangzheng, and PAN Shilong. Research advances and applications of microwave photonic broadband vortex electromagnetic wave radar[J]. Journal of Radars, in press. doi: 10.12000/JR25263

微波光子宽带涡旋电磁波雷达研究进展及应用

DOI: 10.12000/JR25263 CSTR: 32380.14.JR25263
基金项目: 国家自然科学基金(62371446),上海航天科技创新基金(SAST2024-023),重点研发计划项目课题(2021YFB2800803), 雷达成像与微波光子技术教育部重点实验室开放课题(NJ20250001)
详细信息
    作者简介:

    孙冠群,博士,讲师,主要研究方向为微波光子新体制雷达、前视雷达成像等

    张方正,博士,教授,博士生导师,主要研究方向为微波光子学、微波光子雷达、雷达成像与抗干扰等

    潘时龙,博士,教授,博士生导师,主要研究方向为基于微波光子技术的新体制雷达、无线通信、测量系统等

    通讯作者:

    张方正 zhangfangzheng@nuaa.edu.cn

    责任主编:刘康 Corresponding Editor: LIU Kang

  • 中图分类号: TN951

Research Advances and Applications of Microwave Photonic Broadband Vortex Electromagnetic Wave Radar

Funds: The National Natural Science Foundation of China under Grant (62371446), The Shanghai Aerospace Science and Technology Innovation Foundation (SAST2024-023), The National Key Research and Development Program of China under Grant (2021YFB2800803), The Key Laboratory of Radar Imaging and Microwave Photonics (NUAA), Ministry of Education, under Grant (NJ20250001)
More Information
  • 摘要: 涡旋电磁波雷达利用携带轨道角动量的电磁波进行探测,可以在波束内提供独特的方位分辨能力并增强目标散射信息,在目标检测、成像与识别中具有重要潜力。然而,面对日益复杂的探测场景,传统涡旋电磁波雷达受限于电子器件带宽瓶颈,在宽带信号产生与调控方面面临巨大挑战,难以兼顾高距离分辨率与高方位分辨率。微波光子技术凭借其超宽带、低损耗及抗电磁干扰等天然优势,为突破上述限制提供了有效途径。该文介绍了微波光子宽带涡旋电磁波雷达的研究进展及其在前视成像领域的应用能力。首先,阐述了基于微波光子技术的宽带涡旋电磁信号收发架构与成像机理,深入分析了宽带条件下涡旋电磁波的频率依赖特性及其对成像的影响。其次,梳理了微波光子宽带移相、光控波束形成及宽带信号产生等关键技术,阐明其相较于传统电子方案的显著性能优势。在此基础上,展示了三种典型的微波光子宽带涡旋电磁波雷达系统方案,并通过原理样机实验验证了其在前视场景下的高分辨成像能力。最后,对微波光子宽带涡旋电磁波雷达未来的发展趋势进行了展望。

     

  • 图  1  微波光子涡旋电磁波雷达典型架构

    Figure  1.  Schematic diagram of microwave photonic vortex electromagnetic wave radar

    图  2  微波光子宽带移相技术典型原理框图[30, 33, 40]

    Figure  2.  Diagrams of typical microwave photonic broadband phase shifters [30, 33, 40]

    图  3  沿仰角方向的涡旋电磁场强观测结果图[27]

    Figure  3.  Measured field patterns along elevation direction [27]

    图  4  l = 15时不同带宽的涡旋电磁波的辐射场能量对比[27]

    Figure  4.  The radiation fields of vortex EM waves with different bandwidths for l = 15 [27]

    图  5  不同仰角调制系数Jl(kasinθ)的幅频曲线[27]

    Figure  5.  Amplitude-frequency curve of modulation coefficient Jl(kasinθ) with different elevation angles [27]

    图  6  微波光子宽带涡旋电波雷达探测模型及成像处理流程

    Figure  6.  Detection model and imaging processing workflow of the microwave photonic broadband vortex EM wave radar

    图  7  基于微波光子移相的宽带涡旋电磁波雷达系统[27]

    Figure  7.  Broadband vortex EM wave radar system based on microwave photonic phase shifting [27]

    图  8  基于微波光子移相的宽带涡旋电磁波产生原理示意图[27]

    Figure  8.  Principle schematic of broadband vortex EM wave generation based on microwave photonic phase shifting[27]

    图  9  基于微波光子移相的8通道宽带涡旋电磁波雷达系统[27]

    Figure  9.  8-channel broadband vortex EM wave radar system based on microwave photonic phase shifting [27]

    图  10  微波光子移相器宽带工作性能验证[27]

    Figure  10.  Broadband performance validation of the microwave photonic phase shifter [27]

    图  11  不同模式及不同频率涡旋电磁波的辐射场观测结果[27]

    Figure  11.  Measured amplitude and phase patterns of the vortex EM waves under different OAM modes and frequencies[27]

    图  12  微波光子宽带涡旋电磁波雷达成像性能验证[27]

    Figure  12.  Verification of high-resolution imaging performance for photonics-based broadband vortex EM wave radar [27]

    图  13  基于单环光延时网络的宽带涡旋电磁快速成像雷达原理图[28]

    Figure  13.  Schematic diagram of the broadband vortex EM fast imaging radar based on a single-loop optical delay network [28]

    图  14  涡旋电磁波频率-OAM模式关系示意图[28]

    Figure  14.  Frequency versus OAM mode relationship for vortex EM waves [28]

    图  15  16个不同频率子脉冲的相位分布图[28]

    Figure  15.  Phase distributions for 16 sub-pulses at different frequencies [28]

    图  16  基于信息解耦的涡旋电磁波雷达图像重构方法流程图[28]

    Figure  16.  Flowchart of the image reconstruction method based on information decoupling [28]

    图  17  单点目标成像结果对比[28]

    Figure  17.  Comparison of imaging results for single-point target[28]

    图  18  基于光注入半导体激光器的宽带涡旋电磁超分辨成像雷达系统原理图[29]

    Figure  18.  Schematic diagram of the broadband vortex EM super-resolution imaging radar system based on an optical injection semiconductor laser [29]

    图  19  基于光注入半导体激光器的宽带涡旋电磁超分辨成像演示验证系统图[29]

    Figure  19.  Diagram of the proof-of-concept system for super-resolution vortex EM imaging based on an optical injection semiconductor laser [29]

    图  20  雷达收发机性能验证[29]

    Figure  20.  Verification of radar transceiver performance [29]

    图  21  超分辨性能验证[29]

    Figure  21.  Super-resolution performance verification [29]

    图  22  复杂目标成像对比[29]

    Figure  22.  Comparison of complex target imaging performance[29]

  • [1] AUSHERMAN D A, KOZMA A, WALKER J L, et al. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(4): 363–400. doi: 10.1109/TAES.1984.4502060.
    [2] 杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–692. doi: 10.12000/JR19099.

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–692. doi: 10.12000/JR19099.
    [3] 刘永坦. 雷达成像技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014: 169–170.

    LIU Yongtan. Radar Imaging Technology[M]. Harbin: Harbin Institute of Technology Press, 2014: 169–170.
    [4] 许会, 陈艳玲. 微波成像技术及其算法综述[J]. 无损检测, 2012, 34(10): 67–71,82.

    XU Hui and CHEN Yanling. Overview of the technology and algorithm of microwave imaging[J]. Nondestructive Testing, 2012, 34(10): 67–71,82.
    [5] 程永强, 王宏强, 曹凯程, 等. 微波关联成像研究进展及展望(特邀)[J]. 红外与激光工程, 2021, 50(12): 20210790. doi: 10.3788/IRLA20210790.

    CHENG Yongqiang, WANG Hongqiang, CAO Kaicheng, et al. Progress and prospect of microwave coincidence imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210790. doi: 10.3788/IRLA20210790.
    [6] CHEN C C and ANDREWS H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2–14. doi: 10.1109/TAES.1980.308873.
    [7] WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752.
    [8] STEINBERG B D. Microwave imaging of aircraft[J]. Proceedings of the IEEE, 1988, 76(12): 1578–1592. doi: 10.1109/5.16351.
    [9] STEINBERG B D. Radar imaging from a distorted array: The radio camera algorithm and experiments[J]. IEEE Transactions on Antennas and Propagation, 1981, 29(5): 740–748. doi: 10.1109/TAP.1981.1142652.
    [10] 刘克成, 宋学诚. 天线原理[M]. 长沙: 国防科技大学出版社, 1989:178.

    LIU Kecheng and SONG Xuecheng. Principles of Antennas[M]. Changsha: National University of Defense Technology Press, 1989:178.
    [11] MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701.
    [12] WILLNER A E, HUANG Hao, YAN Yan, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66–106. doi: 10.1364/AOP.7.000066.
    [13] TRINDER J R. Parabolic reflector[P]. WO, 2005069443A1, 2005.
    [14] THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701.
    [15] 郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013.

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013.
    [16] LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714. doi: 10.1109/LAWP.2014.2376970.
    [17] QU Haiyou, LI Shiyuan, CHEN Chang, et al. High-resolution orbital angular momentum imaging with the removal of Bessel function modulation effect[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(4): 2577–2590. doi: 10.1109/TMTT.2023.3314107.
    [18] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078.
    [19] XU Shaofu, ZOU Weiwen, YANG Guang, et al. Ultra-high range resolution demonstration of a photonics-based microwave radar using a high-repetition-rate mode-locked fiber laser[J]. Chinese Optics Letters, 2018, 16(6): 062801. doi: 10.3788/COL201816.062801.
    [20] ZHANG Siteng, ZOU Weiwen, QIAN Na, et al. Enlarged range and filter-tuned reception in photonic time-stretched microwave radar[J]. IEEE Photonics Technology Letters, 2018, 30(11): 1028–1031. doi: 10.1109/LPT.2018.2828459.
    [21] MA Cong, YANG Yue, CAO Fengting, et al. High-resolution microwave photonic radar with sparse stepped frequency chirp signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2007010. doi: 10.1109/TGRS.2022.3208112.
    [22] SUN Guanqun, ZHANG Fangzheng, and PAN Shilong. Millimeter-level resolution through-the-wall radar imaging enabled by an optically injected semiconductor laser[J]. Optics Letters, 2021, 46(22): 5659–5662. doi: 10.1364/OL.441803.
    [23] BERLAND F, FROMENTEZE T, BOUDESCOQUE D, et al. Microwave photonic MIMO radar for short-range 3D imaging[J]. IEEE Access, 2020, 8: 107326–107334. doi: 10.1109/ACCESS.2020.3000801.
    [24] DONG Jingwen, ZHANG Fubo, JIAO Zekun, et al. Microwave photonic radar with a fiber-distributed antenna array for three-dimensional imaging[J]. Optics Express, 2020, 28(13): 19113–19125. doi: 10.1364/OE.393502.
    [25] SERAFINO G, MARESCA S, DI MAURO L, et al. A photonics-assisted multi-band MIMO radar network for the port of the future[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(6): 6000413. doi: 10.1109/JSTQE.2021.3092880.
    [26] MARESCA S, SERAFINO G, NOVIELLO C, et al. Field trial of a coherent, widely distributed, dual-band photonics-based MIMO radar with ISAR imaging capabilities[J]. Journal of Lightwave Technology, 2022, 40(20): 6626–6635. doi: 10.1109/JLT.2022.3182421.
    [27] SUN Guanqun, ZHANG Fangzheng, ZHAO Keyi, et al. Photonics-based broadband vortex electromagnetic wave generation for high-resolution imaging[J]. Journal of Lightwave Technology, 2024, 42(6): 1894–1900. doi: 10.1109/JLT.2023.3329424.
    [28] SUN Guanqun, ZHANG Fangzheng, and PAN Shilong. Frequency-dependent vortex electromagnetic wave imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2025, 24(1): 23–27. doi: 10.1109/LAWP.2024.3481634.
    [29] SUN Guanqun, ZHANG Fangzheng, YU Xiaoyue, et al. Photonics-based broadband single-input-multiple- output-OAM coincidence imaging[J]. IEEE Transactions on Radar Systems, 2024, 2: 690–698. doi: 10.1109/TRS.2024.3418461.
    [30] WANG Xudong, CHAN E H W, and MINASIAN R A. All-optical photonic microwave phase shifter based on an optical filter with a nonlinear phase response[J]. Journal of Lightwave Technology, 2013, 31(20): 3323–3330. doi: 10.1109/JLT.2013.2281833.
    [31] BUI L A, MITCHELL A, GHORBANI K, et al. Wideband RF photonic vector sum phase-shifter[J]. Electronics Letters, 2003, 39(6): 536–537. doi: 10.1049/el:20030332.
    [32] SUN Xiaoqiang, FU Songnian, XU Kun, et al. Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3206–3212. doi: 10.1109/TMTT.2010.2074811.
    [33] PAGANI M, MARPAUNG D, CHOI D Y, et al. Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering[J]. Optics Express, 2014, 22(23): 28810–28818. doi: 10.1364/OE.22.028810.
    [34] THÉVENAZ L. Slow and fast light in optical fibres[J]. Nature Photonics, 2008, 2(8): 474–481. doi: 10.1038/nphoton.2008.147.
    [35] HERRÁEZ M G, SONG K Y, and THÉVENAZ L. Arbitrary-bandwidth Brillouin slow light in optical fibers[J]. Optics Express, 2006, 14(4): 1395–1400. doi: 10.1364/OE.14.001395.
    [36] LOAYSSA A, GALECH S, and LAHOZ F. Broadband microwave photonic phase-shifter based on stimulated Brillouin scattering[C]. The IEEE LEOS Annual Meeting, Sydney, Australia, 2005: 839–840. doi: 10.1109/LEOS.2005.1548269.
    [37] XUE Weiqi, SALES S, CAPMANY J, et al. Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers[J]. Optics Express, 2010, 18(6): 6156–6163. doi: 10.1364/OE.18.006156.
    [38] DONG Yi, HE Hao, HU Weisheng, et al. Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach–Zehnder interferometer[J]. Optics Letters, 2007, 32(7): 745–747. doi: 10.1364/OL.32.000745.
    [39] PU Minhao, LIU Liu, XUE Weiqi, et al. Tunable microwave phase shifter based on silicon-on-insulator microring resonator[J]. IEEE Photonics Technology Letters, 2010, 22(12): 869–871. doi: 10.1109/LPT.2010.2046725.
    [40] JIANG Hengyun, YAN Lianshan, YE Jia, et al. Photonic generation of phase-coded microwave signals with tunable carrier frequency[J]. Optics Letters, 2013, 38(8): 1361–1363. doi: 10.1364/OL.38.001361.
    [41] LI Ze, LI Wangzhe, CHI Hao, et al. Photonic generation of phase-coded microwave signal with large frequency tunability[J]. IEEE Photonics Technology Letters, 2011, 23(11): 712–714. doi: 10.1109/LPT.2011.2132121.
    [42] WEI Kai and DARYOUSH A S. Self-forced opto-electronic oscillators using Sagnac-loop PM-IM convertor[J]. Journal of Lightwave Technology, 2020, 38(19): 5278–5285. doi: 10.1109/JLT.2020.2997652.
    [43] LI Wei, SUN Wenhui, WANG Wenting, et al. Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter[J]. Optics Express, 2014, 22(5): 5522–5527. doi: 10.1364/OE.22.005522.
    [44] ZHANG Yamei and PAN Shilong. Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters[J]. IEEE Journal of Quantum Electronics, 2018, 54(4): 0700112. doi: 10.1109/JQE.2018.2847398.
    [45] SHIN J D, LEE B S, and KIM B G. Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines[J]. IEEE Photonics Technology Letters, 2004, 16(5): 1364–1366. doi: 10.1109/LPT.2004.826083.
    [46] MOREIRA R L, GARCIA J, LI Wenzao, et al. Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications[J]. IEEE Photonics Technology Letters, 2013, 25(12): 1165–1168. doi: 10.1109/LPT.2013.2261807.
    [47] LIU Yang, CHOUDHARY A, MARPAUNG D, et al. Gigahertz optical tuning of an on-chip radio frequency photonic delay line[J]. Optica, 2017, 4(4): 418–423. doi: 10.1364/OPTICA.4.000418.
    [48] YI Xiaoke, LI Liwei, HUANG T X H, et al. Programmable multiple true-time-delay elements based on a Fourier-domain optical processor[J]. Optics Letters, 2012, 37(4): 608–610. doi: 10.1364/OL.37.000608.
    [49] LIU Yunqi, YANG Jianliang, and YAO Jianping. Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line[J]. IEEE Photonics Technology Letters, 2002, 14(8): 1172–1174. doi: 10.1109/LPT.2002.1022008.
    [50] CARDENAS J, FOSTER M A, SHERWOOD-DROZ N, et al. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators[J]. Optics Express, 2010, 18(25): 26525–26534. doi: 10.1364/OE.18.026525.
    [51] CRUZ J L, ORTEGA B, ANDRES M V, et al. Chirped fibre Bragg gratings for phased-array antennas[J]. Electronics Letters, 1997, 33(7): 545–546. doi: 10.1049/el:19970407.
    [52] MATTHEWS P J, LIU P L, MEDBERRY J B, et al. Demonstration of a wide-band fiber-optic nulling system for array antennas[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1327–1331. doi: 10.1109/22.775474.
    [53] SHI Nuannuan, LI Wei, ZHU Ninghua, et al. Optically controlled phase array antenna [Invited][J]. Chinese Optics Letters, 2019, 17(5): 052301. doi: 10.3788/COL201917.052301.
    [54] WANG Chao and YAO Jianping. Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2008, 20(11): 882–884. doi: 10.1109/LPT.2008.922333.
    [55] WANG Chao and YAO Jianping. Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber Bragg grating[J]. Journal of Lightwave Technology, 2009, 27(16): 3336–3341. doi: 10.1109/JLT.2008.2010561.
    [56] LI Ming, SHAO Liyang, ALBERT J, et al. Tilted fiber Bragg grating for chirped microwave waveform generation[J]. IEEE Photonics Technology Letters, 2011, 23(5): 314–316. doi: 10.1109/LPT.2010.2102013.
    [57] RASHIDINEJAD A and WEINER A M. Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability[J]. Journal of Lightwave Technology, 2014, 32(20): 3383–3393. doi: 10.1109/JLT.2014.2331491.
    [58] GUO Qingshui, ZHANG Fangzheng, ZHOU Pei, et al. Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing[J]. IEEE Photonics Technology Letters, 2017, 29(16): 1320–1323. doi: 10.1109/LPT.2017.2722004.
    [59] YAO Yao, ZHANG Fangzheng, ZHANG Ying, et al. Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging[C]. Optical Fiber Communication Conference, San Diego, USA, 2018: Th3G.5. doi: 10.1364/OFC.2018.Th3G.5.
    [60] YACOUBIAN A and DAS P K. Digital-to-analog conversion using electrooptic modulators[J]. IEEE Photonics Technology Letters, 2003, 15(1): 117–119. doi: 10.1109/LPT.2002.805844.
    [61] NISHITANI T, KONISHI T, FURUKAWA H, et al. All-optical digital-to-analog conversion using pulse pattern recognition based on optical correlation processing[J]. Optics Express, 2005, 13(25): 10310–10315. doi: 10.1364/OPEX.13.010310.
    [62] GAO Bindong, ZHANG Fangzheng, and PAN Shilong. Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter[J]. Optics Communications, 2017, 383: 191–196. doi: 10.1016/j.optcom.2016.08.083.
    [63] LI Jiading, XUE Xiaoxiao, ZHA Yu, et al. A segmented photonic digital-to-analog converter with a high effective number of bits[C]. 2019 International Topical Meeting on Microwave Photonics, Ottawa, Canada, 2019: 1–3. doi: 10.1109/MWP.2019.8892090.
    [64] ZHANG Bowen, ZHU Dan, ZHOU Pei, et al. Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser[J]. Applied Optics, 2019, 58(20): 5479–5485. doi: 10.1364/AO.58.005479.
    [65] ZHOU Pei, ZHANG Fangzheng, GUO Qingshui, et al. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser[J]. Optics Express, 2016, 24(16): 18460–18467. doi: 10.1364/OE.24.018460.
    [66] ZHOU Pei, ZHANG Fangzheng, GUO Qingshui, et al. Reconfigurable radar waveform generation based on an optically injected semiconductor laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(6): 1801109. doi: 10.1109/JSTQE.2017.2699659.
    [67] ZHOU Pei, ZHANG Fangzheng, YE Xingwei, et al. Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser[J]. IEEE Photonics Journal, 2016, 8(6): 5501909. doi: 10.1109/JPHOT.2016.2629082.
    [68] YUAN Tiezhu, WANG Hongqiang, CHENG Yongqiang, et al. Electromagnetic vortex-based radar imaging using a single receiving antenna: Theory and experimental results[J]. Sensors, 2017, 17(3): 630. doi: 10.3390/s17030630.
    [69] LIU Kang, LI Xiang, GAO Yue, et al. High-resolution electromagnetic vortex imaging based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2017, 17(21): 6918–6927. doi: 10.1109/JSEN.2017.2754554.
    [70] LIU Da, SHI Hongyin, YANG Ting, et al. Autofocusing and imaging algorithm for moving target by vortex electromagnetic wave radar[J]. Digital Signal Processing, 2023, 134: 103903. doi: 10.1016/j.dsp.2022.103903.
  • 加载中
图(22)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-12-05

目录

    /

    返回文章
    返回