基于视觉显著性的SAR遥感图像NanoDet舰船检测方法

刘方坚 李媛

刘方坚, 李媛. 基于视觉显著性的SAR遥感图像NanoDet舰船检测方法[J]. 雷达学报, 2021, 10(6): 885–894. doi: 10.12000/JR21105
引用本文: 刘方坚, 李媛. 基于视觉显著性的SAR遥感图像NanoDet舰船检测方法[J]. 雷达学报, 2021, 10(6): 885–894. doi: 10.12000/JR21105
LIU Fangjian and LI Yuan. SAR remote sensing image ship detection method NanoDet based on visual saliency[J]. Journal of Radars, 2021, 10(6): 885–894. doi: 10.12000/JR21105
Citation: LIU Fangjian and LI Yuan. SAR remote sensing image ship detection method NanoDet based on visual saliency[J]. Journal of Radars, 2021, 10(6): 885–894. doi: 10.12000/JR21105

基于视觉显著性的SAR遥感图像NanoDet舰船检测方法

DOI: 10.12000/JR21105
基金项目: 国家自然科学基金(61972021, 61672076)
详细信息
    作者简介:

    刘方坚(1979–),男,山东临沂人,中国科学院空天信息创新研究院副研究员,主要研究方向为遥感卫星地面处理系统技术研究等

    李 媛(1996–),女,河北石家庄人,于北京化工大学获得学士、硕士学位,现为北京理工大学博士生,主要研究方向为遥感图像分类、目标检测等

    通讯作者:

    刘方坚 liufj@aircas.ac.cn

  • 责任主编:孙显 Corresponding Editor: SUN Xian
  • 中图分类号: TN957.52

SAR Remote Sensing Image Ship Detection Method NanoDet Based on Visual Saliency

Funds: The National Natural Science Foundation of China (61972021, 61672076)
More Information
  • 摘要: 在合成孔径雷达遥感图像中,舰船由金属材质构成,后向散射强;海面平滑,后向散射弱,因此舰船是海面背景下的视觉显著目标。然而,SAR遥感影像幅宽大、海面背景复杂,且不同舰船目标特征差异大,导致舰船快速准确检测困难。为此,该文提出一种基于视觉显著性的SAR遥感图像NanoDet舰船检测方法。该方法首先通过自动聚类算法划分图像样本为不同场景类别;其次,针对不同场景下的图像进行差异化的显著性检测;最后,使用优化后的轻量化网络模型NanoDet对加入显著性图的训练样本进行特征学习,使系统模型能够实现快速和高精确度的舰船检测效果。该方法对SAR图像应用实时性具有一定的帮助,且其轻量化模型利于未来实现硬件移植。该文利用公开数据集SSDD和AIR-SARship-2.0进行实验验证,体现了该算法的有效性。

     

  • 图  1  系统整体流程示意图

    Figure  1.  Schematic diagram of the overall system process

    图  2  极小PAN结构

    Figure  2.  Structure diagram of minimize PAN

    图  3  FCOS检测头结构图

    Figure  3.  Structure diagram of FCOS detection head

    图  4  多尺度特征提取示意图

    Figure  4.  Schematic diagram of multi-scale feature extraction

    图  5  添加预处理效果图

    Figure  5.  The result diagram of the preprocessing module

    图  6  是否加入本文预处理方法检测结果对比图

    Figure  6.  The result diagram of the ship detection method with the preprocessing module added or not

    图  7  本文方法基于SSDD数据集的检测结果图

    Figure  7.  The ship inspection result diagram based on SSDD dataset of the method proposed in this paper

    图  8  本文方法基于AIR-SARship数据集的检测结果图

    Figure  8.  The detection result diagram based on AIR-SARship dataset of our approach

    图  9  不同方法检测结果对比图

    Figure  9.  Comparison chart of detection results of different methods

    图  10  不同方法精度-召回率曲线

    Figure  10.  Precision-Recall curves of different methods.

    表  1  基于全部实验数据的不同方法检测性能对比

    Table  1.   Comparison of detection performance of different methods based on all dataset

    方法PD (%)PF (%)Precision (%)Recall (%)mAP (%)Time (ms)
    Yolov2-tiny53.1014.9775.3653.1055.209.37
    Yolov3-tiny71.0313.5576.1571.0361.4211.65
    NanoDet83.5610.0383.6483.5676.334.96
    Faster R-CNN84.989.6282.3784.9874.94313.55
    SSD94.367.9685.8392.3682.5253.98
    Yolov494.984.6689.3493.9888.62120.34
    Yolov595.125.4394.6895.1290.5637.52
    PANet93.224.5294.9693.2290.77183.68
    未加预处理方法92.655.5386.7192.6585.895.39
    本文方法95.643.4895.4795.6492.495.22
    下载: 导出CSV
  • [1] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [2] 郭倩, 王海鹏, 徐丰. SAR图像飞机目标检测识别进展[J]. 雷达学报, 2020, 9(3): 497–513. doi: 10.12000/JR20020

    GUO Qian, WANG Haipeng, and XU Feng. Research progress on aircraft detection and recognition in SAR imagery[J]. Journal of Radars, 2020, 9(3): 497–513. doi: 10.12000/JR20020
    [3] 张杰, 张晰, 范陈清, 等. 极化SAR在海洋探测中的应用与探讨[J]. 雷达学报, 2016, 5(6): 596–606. doi: 10.12000/JR16124

    ZHANG jie, ZHANG Xi, FAN Chenqing, et al. Discussion on application of polarimetric synthetic aperture radar in marine surveillance[J]. Journal of Radars, 2016, 5(6): 596–606. doi: 10.12000/JR16124
    [4] 牟效乾, 陈小龙, 关键, 等. 基于INet的雷达图像杂波抑制和目标检测方法[J]. 雷达学报, 2020, 9(4): 640–653. doi: 10.12000/JR20090

    MOU Xiaoqian, CHEN Xiaolong, GUAN Jian, et al. Clutter suppression and marine target detection for radar images based on INet[J]. Journal of Radars, 2020, 9(4): 640–653. doi: 10.12000/JR20090
    [5] WACKERMAN C C, FRIEDMAN K S, PICHEL W G, et al. Automatic detection of ships in RADARSAT-1 SAR imagery[J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568–577. doi: 10.1080/07038992.2001.10854896
    [6] 陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3): 413–424. doi: 10.12000/JR19041

    CHEN Huiyuan, LIU Zeyu, GUO Weiwei, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3): 413–424. doi: 10.12000/JR19041
    [7] AUDEBERT N, LE SAUX B, and LEFÈVRE S. How useful is region-based classification of remote sensing images in a deep learning framework?[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 5091–5094. doi: 10.1109/IGARSS.2016.7730327.
    [8] WANG Wenxiu, FU Yutian, DONG Feng, et al. Remote sensing ship detection technology based on DoG preprocessing and shape features[C]. The 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 1702–1706. doi: 10.1109/CompComm.2017.8322830.
    [9] HOU Xiaodi and ZHANG Liqing. Saliency detection: A spectral residual approach[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1–8. doi: 10.1109/CVPR.2007.383267.
    [10] GOFERMAN S, ZELNIK-MANOR L, and TAL A. Context-aware saliency detection[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2376–2383. doi: 10.1109/CVPR.2010.5539929.
    [11] LIU Zhi, ZOU Wenbin, and LE MEUR O. Saliency tree: A novel saliency detection framework[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1937–1952. doi: 10.1109/TIP.2014.2307434
    [12] CHENG Gong, ZHOU Peicheng, and HAN Junwei. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405–7415. doi: 10.1109/TGRS.2016.2601622
    [13] LIU Li, OUYANG Wanli, WANG Xiaogang, et al. Deep learning for generic object detection: A survey[J]. International Journal of Computer Vision, 2020, 128(2): 261–318. doi: 10.1007/s11263-019-01247-4
    [14] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    [15] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [16] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [17] NIE Xuan, DUAN Mengyang, DING Haoxuan, et al. Attention mask R-CNN for ship detection and segmentation from remote sensing images[J]. IEEE Access, 2020, 8: 9325–9334. doi: 10.1109/ACCESS.2020.2964540
    [18] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768. doi: 10.1109/CVPR.2018.00913.
    [19] LIU Yudong, WANG Yongtao, WANG Siwei, et al. Cbnet: A novel composite backbone network architecture for object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11653–11660. doi: 10.1609/aaai.v34i07.6834
    [20] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time objectdetection[C]. The IEEE conference on computer vision and pattern recognition, Las Vegas, USA, 2016: 779–788.
    [21] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [22] REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525. doi: 10.1109/CVPR.2017.690.
    [23] REDMON J and FARHADI A. Yolov3: An incremental improvement[C]. arXiv: 1804.02767, 2018.
    [24] BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[C]. arXiv: 2004.10934, 2020.
    [25] IANDOLA F N, HAN Song, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[C]. arXiv: 1602.07360, 2016.
    [26] MITTELMANN H and PENG Jiming. Estimating bounds for quadratic assignment problems associated with hamming and Manhattan distance matrices based on semidefinite programming[J]. SIAM Journal on Optimization, 2010, 20(6): 3408–3426. doi: 10.1137/090748834
    [27] LI Yanghao, CHEN Yuntao, WANG Naiyan, et al. Scale-aware trident networks for object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6053–6062.
    [28] PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[C]. The 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 8026–8037.
    [29] LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 2017: 1–6. doi: 10.1109/BIGSARDATA.2017.8124934.
    [30] 李健伟, 曲长文, 彭书娟. 基于级联CNN的SAR图像舰船目标检测算法[J]. 控制与决策, 2019, 34(10): 2191–2197. doi: 10.13195/j.kzyjc.2018.0168

    LI Jianwei, QU Changwen, and PENG Shujuan. A ship detection method based on cascade CNN in SAR images[J]. Control and Decision, 2019, 34(10): 2191–2197. doi: 10.13195/j.kzyjc.2018.0168
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2663
  • HTML全文浏览量:  1514
  • PDF下载量:  328
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-09-18
  • 网络出版日期:  2021-10-19
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回