Loading [MathJax]/jax/output/SVG/jax.js

电控可重构极化调控超表面研究进展

周洪澄 余潇然 王豫 严仲明

赵华, 郭立新. 分形粗糙表面涂覆目标太赫兹散射特性[J]. 雷达学报, 2018, 7(1): 91-96. doi: 10.12000/JR17091
引用本文: 周洪澄, 余潇然, 王豫, 等. 电控可重构极化调控超表面研究进展[J]. 雷达学报(中英文), 2024, 13(3): 696–713. doi: 10.12000/JR23230
Zhao Hua, Guo Lixin. Electromagnetic Scattering Characteristics of Fractal Rough Coated Objects in the Terahertz Range[J]. Journal of Radars, 2018, 7(1): 91-96. doi: 10.12000/JR17091
Citation: ZHOU Hongcheng, YU Xiaoran, WANG Yu, et al. Research progress of electrically controlled reconfigurable polarization manipulation using metasurface[J]. Journal of Radars, 2024, 13(3): 696–713. doi: 10.12000/JR23230

电控可重构极化调控超表面研究进展

DOI: 10.12000/JR23230
基金项目: 四川省自然科学基金(2022NSFSC1801, 2023NSFSC0463)
详细信息
    作者简介:

    周洪澄,博士,讲师,主要研究方向为电磁场调控及其应用技术(电磁超材料、目标感知与成像)、天线理论与技术、时间反演电磁学

    余潇然,硕士生,主要研究方向为电磁场调控技术、天线理论与设计

    王 豫,博士,教授,主要研究方向为基于新材料物理效应的电磁场调控技术与应用、超导电工与电子技术、电磁能储存/转换与传输技术、新型电磁推进技术、复杂电磁场分析与调控技术、新型电磁材料与器件

    严仲明,博士,研究员,主要研究方向为能量存储及变换(脉冲功率、无线传能)、电磁场调控及其应用技术(电磁超材料、磁电功能器件、目标感知与识别)、电磁发射技术(直线驱动、同步控制)

    通讯作者:

    周洪澄 zhouhc@home.swjtu.edu.cn

    余潇然 yuxr0002@163.com

  • 责任主编:蒋卫祥 Corresponding Editor: JIANG Weixiang
  • 中图分类号: TN82

Research Progress of Electrically Controlled Reconfigurable Polarization Manipulation Using Metasurface

Funds: Sichuan Provincial Natural Science Foundation (2022NSFSC1801, 2023NSFSC0463)
More Information
  • 摘要: 作为一种由众多亚波长单元周期性或非周期性排列构成的二维人工结构,超表面展示了其在电磁波极化调控领域的卓越能力,开辟了电磁波调控的新途径。电控可重构极化调控超表面,可通过电信号实时调整其结构或材料特性进而动态地调控电磁波的极化状态,因而受到广泛研究关注。该文全面综述了电控可重构极化调控超表面的发展历程,详细探讨了微波段具备不同传输特性的电控可重构极化调控超表面的技术进展,并对电控可重构极化调控超表面技术的未来发展进行了深入的探讨和展望。

     

  • 近年来关于太赫兹的研究日趋增加,相对于微波频段雷达,太赫兹雷达以其更高的空间分辨率和角分辨率具有更大的优势受到了越来越多的重视[1,2]。太赫兹辐射的光子能量低,对穿透物不会造成损伤,并且可以穿过大多数介电物质,实现无损检测。太赫兹波具有穿透性,能够实现对隐蔽物体的有效检测,可应用于安检相关的领域。太赫兹频段相比于微波频段频率更高,更容易发射大带宽信号,具有更高的分辨率,具有海量的频谱资源,可用于超宽带超高速无线通信。太赫兹波段目标表面的细微结构、粗糙度等细节会显著影响其后向散射特性,实现更小尺寸目标的探测、更精确目标的运动与物理参数反演[3]。太赫兹(terahertz, THz)波段位于微波与红外波之间,其频率范围为0.1~10 THz (1 THz=1012 Hz),对应的波长为30 μm~3 mm。太赫兹频段目标散射特性是太赫兹雷达探测和成像应用的物理基础[4,5],同时也是太赫兹雷达系统进行链路设计、特征提取以及成像算法的重要依据。国内首都师范大学太赫兹实验室研制了太赫兹数字全息成像系统,对太赫兹电磁波的振幅、相位、频率及偏振等全部光学信息的3维空间分布进行精确测量[6]。针对太赫兹波段目标的散射特性,美国麻省LOWELL大学毫米波实验室利用1.56 THz源在紧缩场中对粗糙表面圆柱体的目标散射特性进行了研究[4]。天津大学太赫兹研究中心搭建了以0.2 THz返波管振荡器源、热释电探测器、小型自动旋转光学平台等组成的太赫兹波目标散射特性实验测试系统,并对粗糙铜面的散射特性等进行了研究[7,8]。对于介质[9]和涂覆目标的太赫兹散射,北京航空航天大学江月松等人考虑粗糙度修正表面的散射系数研究了基于经验公式的涂覆目标的太赫兹散射特性[10]

    本文区别于以往采用经验公式[10]以粗糙度修正散射系数的研究方法,把随机粗糙面的建模理念应用到太赫兹波段表面粗糙目标的建模中。首先模拟生成了分形粗糙面近似代替实际复杂的粗糙面,对生成的分形粗糙面进行坐标变换导入计算机辅助设计(Computer Aided Design, CAD)建模软件建立具有粗糙表面的目标模型;然后对表面粗糙目标按照入射波的频率以满足物理光学近似的要求进行剖分。根据菲涅尔反射系数求得表面电流进而计算涂覆粗糙目标的雷达散射截面(Radar Cross Section, RCS)。并针对不同频率以及不同涂覆厚度的表面粗糙涂覆目标,分别进行了仿真分析。

    自1982年Mandelbrot首次提出“分形”的概念[11],指的是组成部分与整体以某种方式相形似,分形理论就在很多领域中得到应用。“分形”不同于通常意义上的长度、面积、体积等几何概念,分形内部的任何一个相对独立的部分,在一定程度上都应该是整体的再现和缩影,分形几何体内部存在无穷层次、具有见微知著、由点及面的自相似结构,即具有自相似性。由于粗糙面一般具有非线性的几何结构,因此采用非线性的方法模拟粗糙面更能反映其物理本质。自然界的许多物体,如地、海表面、植被和森林等都在一定尺度范围内存在统计意义上的自相似性,由此很多学者将分形理论应用于电磁散射领域中,用于粗糙面的模拟[12,13]

    1维带限Weierstrass-Mandelbrot分形函数的表达式为:

    f(x)=2δ[1b(2D4)]1/2[b(2D4)N1b(2D4)(N2+1)]1/2N2n=N1b(D2)ncos(2πsbnx+φn) (1)

    其中, δ 为高度的均方根,b是空间基频,D为分形维数(1<D<2),s为标度因子( s=K0/2π , K0为空间波数), φn (0,2π) 上均匀分布的随机相位,该函数具有零均值。一般取b>1,b为有理数时,f(x)表现为周期函数;b为无理数时,f(x)为准周期函数。标度因子s决定频谱的位置,f(x)的无标度区间一般取 (sbN1)1 (sbN2)1 N=N2N1+1 ,随着N的增加,越来越多的频率分量加到准周期。图1给出了1维分形粗糙面模型,当分维数D增加时,高频分量比重加大,低频分量作用减小,分形粗糙面的粗糙程度增大。根据瑞利判据,粗糙面相对于入射波的粗糙程度,除与粗糙面的高度函数有关还和入射波的频率有关。如普通的目标表面对于微波段来说是光滑的,但相对于太赫兹频段的波来说却是粗糙的。本文主要研究太赫兹波段下目标表面的微粗糙对其散射特性的影响。

    图  1  1维分形粗糙面
    Figure  1.  One dimensional fractal rough surface

    目标表面粗糙度引起的表面起伏一般在其对应的光滑表面的法线方向[14]。因此,对于轴对称旋转目标而言,其表面的粗糙度可近似考虑为对应母线的起伏。将生成的1维分形粗糙面叠加到光滑目标模型对应的母线进行坐标变换,建立具有分形粗糙表面的目标模型。

    对于如图2(a)所示的顶部为半球的粗糙钝锥模型,其母线可以表示为:

    x={(r1+f(x))cosα,r1+Δhtanβ+f(x)cosβ,y>0y<0 (2)
    y={(r1+f(x))sinα,Δh+f(x)sinβ,y>0y<0 (3)

    其中,r1为顶部半球半径,r2为底面半径,h为下部锥台高度, β=atan((r2r1)/h) 。将生成的圆锥母线导入CAD建模软件,对其绕Y轴旋转并进行坐标变换生成如图2(b)所示的具有分形粗糙表面的钝锥模型。

    由Stratton-Chu积分公式,目标远区散射场利用物理光学可表示为[15]

    Es=jk4πexp(jkr)rsˆs×[ˆn×EZ0ˆs×(ˆn×H)]exp(jkrˆs)ds (4)

    其中,kZ0分别为自由空间的波数和本征阻抗, ˆs 为散射波的单位矢量,r为表面上一点的位置矢量, ˆn 为目标表面向外单位法矢量,EH分别为边界上总的电场和总的磁场。

    涂覆介质表面的散射示意图如图3所示。其中 θi 为入射角, ˆi ˆs 分别为入射波和散射波的单位矢量,矢量 ˆei ˆer 分别为入射电场、反射电场平行入射面的极化方向,矢量 ˆe 为入射电场和反射电场垂直入射面的极化方向。

    图  3  表面涂覆目标示意图
    Figure  3.  Local coordinate systems for PO calculation with coating dielectric
    Ei=Eˆe+Eˆei,Es=REˆe+REˆer (5)

    其中, Ei 为边界上入射电场, Es 为边界上散射电场, E E 分别为入射电场在 ˆe ˆei 方向的场分量, R R 分别为涂覆介质表面在垂直极化和水平极化时的反射系数[16]

    涂覆目标雷达散射截面的计算公式为:

    σ=limR4πR2|Es|2|Ei|2 (6)

    为了验证算法的正确性,先通过下面的模型算例加以说明。图4给出了3 GHz平面波TM极化入射下涂覆半球的双站雷达散射截面,其中半球的半径为0.5 m,涂覆厚度为d=2 cm,涂层介质相对介电常数为 εr=36.0 ,相对磁导率为 μr=1.0 。RCS结果曲线可以看出物理光学法和多层快速多极子方法(MLFMA)吻合良好,验证了程序的正确性。

    图  4  涂覆半球模型双站RCS
    Figure  4.  Bistatic RCS of the verification models

    图5给出了频率为3 THz的平面波入射下导体立方体的单站雷达散射截面,结果与文献[3]中采用多层快速多极子方法结果一致,可以看出物理光学方法用于计算THz频段目标散射的有效性。

    图  5  导体立方体模型单站RCS
    Figure  5.  Mono-static RCS of the PEC cube model

    对于图2(b)所示的具有分形粗糙表面的钝锥模型,其顶部半球半径r1=1 mm,底面半径r2=3 mm,锥台高度h=12 mm,分形粗糙面的分维数D=1.5,b=1.5,均方根高度 δ=0.02mm 。涂覆材料相对介电常数 εr=(4.0,1.5) ,相对磁导率 μr=(2.0,1.0) ,涂覆层厚度d=0.03 mm。首先对钝锥导入CAD建模软件进行满足物理光学近似的网格剖分,根据菲涅尔反射系数得出钝锥表面电流分布进而计算其散射场。

    图  2  表面分形粗糙钝锥模型
    Figure  2.  The roughness surface targets model

    图6中结果可以看出,对于模型尺寸相同的光滑钝锥与表面粗糙钝锥的单站雷达散射截面曲线走势基本一致,随着入射角的增大,RCS增大,垂直于锥面照射时达到最大峰值。图6(a)入射频率为30 GHz的情况下光滑钝锥与分形粗糙钝锥的RCS除了小角度基本上重合,可以看出在微波频段目标表面的微粗糙度对RCS的影响很小,可以忽略。图6(b)图6(c)表明太赫兹波段下光滑钝锥和分形粗糙钝锥目标雷达散射截面出现差异,表面的分形粗糙度引起目标RCS曲线震荡起伏,且频率越高起伏越明显,曲线波动越大。因此在太赫兹波段,目标表面的粗糙度对其散射特性的影响需要考虑。

    图  6  钝锥模型单站RCS
    Figure  6.  Mono-static RCS of the coated blunt cone model with different incident frequency

    图7给出了入射波频率为3 THz的不同涂层厚度的粗糙表面目标的后向RCS。可以看出相对于表面为导体的情况,涂覆介质以后,钝锥目标的雷达散射截面几乎在所有角度都有明显减小,并且随着涂层厚度的增大,雷达散射截面持续减小。涂覆介质层对雷达散射截面的缩减有明显的作用,在一定范围内随着涂层厚度的增大,涂覆介质对电磁波的吸收增加表面粗糙钝锥的后向RCS减小。

    图  7  不同涂覆厚度的钝锥单站RCS
    Figure  7.  Mono-static RCS of the blunt cone models coated with different thicknesses

    图8给出了不同入射频率下钝锥单站RCS。随着频率的升高,表面粗糙钝锥的后向RCS多数角度下降,且频率越高RCS值下降得越多。随着频率的增大,入射波的波长变小,目标表面的粗糙度与入射波长的比值增大,粗糙度引起的漫散射效应增大,目标RCS受到表面粗糙度的影响,曲线峰值变得不明显。

    图  8  不同入射频率钝锥模型单站RCS
    Figure  8.  Mono-static RCS of the coating blunt cone models with different incident frequency

    图9给出了不同表面粗糙度的圆柱模型单站雷达散射截面,其半径为r=16.25 mm,高度为h=102 mm,入射波频率为0.3 THz。

    图  9  不同粗糙度圆柱模型单站RCS
    Figure  9.  Mono-static RCS of the cylinder models with different δ

    图10给出了不同表面粗糙度的锥柱模型单站雷达散射截面,半径r=16.25 mm,顶部圆锥高度h1=48.5 mm,底部圆柱部分高度h2=102 mm,入射波频率为0.3 THz。从图9图10给出的结果可以看出,随着均方根高度的增加,目标表面的粗糙度变大,相对于0.3 THz的入射波其波长仅有1 mm,目标更加粗糙,粗糙度对目标的散射结果影响增大。当粗糙度较小时,RCS曲线可以看作是在光滑模型散射结果叠加小起伏震荡;粗糙度增大以后由表面粗糙度引起的RCS起伏甚至在某些角度可以改变光滑模型的散射曲线。

    图  10  不同粗糙度锥柱模型单站RCS
    Figure  10.  Mono-static RCS of the cone-cylinder models with different δ

    本文参考分形粗糙面模拟随机环境的方法来建立具有分形粗糙表面目标,采用基于基尔霍夫近似的物理光学方法研究了涂覆目标的太赫兹散射特性。分析了不同的入射波频率以及不同涂层厚度的分形粗糙表面模型在太赫兹波段的散射特性。相对于微波频段波长远大于目标表面微米量级的粗糙度,粗糙度的影响可以不考虑,而在太赫兹波段,波长与粗糙度处于等量级,必须考虑到粗糙度对于目标散射结果的影响。目标表面有涂覆介质材料时,目标的雷达散射截面小于导体情况下的结果,且在一定的范围内涂覆层越厚,目标雷达散射截面吸收越明显。

  • 图  1  手性结构透射型电控可重构极化调控超表面

    Figure  1.  Chiral structure transmission-type electrically controlled reconfigurable polarization modulation metasurface

    图  2  各向异性结构透射型电控可重构极化调控超表面

    Figure  2.  Anisotropic structure transmission-type electrically controlled reconfigurable polarization modulation metasurface

    图  3  用于无线通信的电控可重构极化调控超表面[44]

    Figure  3.  Electronically reconfigurable polarization modulation metasurface for wireless communication[44]

    图  4  各向异性结构透射型极化旋转超表面[45]

    Figure  4.  Transmission-type polarization rotating metasurface of anisotropic structure[45]

    图  5  谐振腔结构电控可重构极化调控超表面

    Figure  5.  Resonate cavity structure electronically reconfigurable polarization modulation metasurface

    图  6  基于PIN二极管的反射型电控可重构极化调控超表面

    Figure  6.  PIN diode based reflection-type electronically reconfigurable polarization modulation metasurface

    图  7  基于变容二极管的反射型电控可重构极化调控超表面[61]

    Figure  7.  Reflection-type electronically reconfigurable polarization modulation metasurface based on varactor diode[61]

    图  8  基于MEMS开关的反射型电控可重构极化调控超表面

    Figure  8.  Reflection-type electronically controlled reconfigurable polarization modulation metasurface based on MEMS switch

    图  9  透/反射一体型电控可重构极化调控超表面

    Figure  9.  Integrated transmission/reflection electrically controlled reconfigurable polarization modulation metasurfaces

    表  1  y极化入射时极化方位角随偏置电压变化情况(°)[45]

    Table  1.   Variation of polarization angle with bias voltage under y-polarized wave incidence (°)[45]

    Cy (pF) Cx (pF)
    0.18 0.20 0.22 0.24 0.26 0.30
    0.18 –0.007 11.82 24.69 35.77 45.23 59.23
    0.20 –12.58 0.008 14.09 26.24 35.33 50.67
    0.22 –28.89 –15.33 0 13.12 22.69 38.08
    0.24 –43.90 –29.94 –13.82 0.004 9.937 25.38
    0.26 –54.39 –40.57 –24.23 –10.13 –0.001 15.64
    0.30 –69.27 –56.03 –40.10 –26.13 –15.97 –0.006
    下载: 导出CSV

    表  2  透射型电控可重构极化调控超表面总结

    Table  2.   Summary of transmission-type electronically controlled reconfigurable polarization modulation metasurface

    文献 结构类型 电控器件 工作频段(GHz) 极化调控能力 极化隔离度 插入损耗 剖面 入射角稳定性
    [38] 手性 PIN二极管 9.70 线-左旋圆极化转换
    线-右旋圆极化转换
    线极化保持
    ≥20 dB
    ≥20 dB
    1.32 dB
    1.32 dB
    1 dB
    0.05λ0
    [39] 手性 PIN二极管 2.50 线-左旋圆极化转换
    线-右旋圆极化转换
    0.07λ0
    [40] 各向异性 PIN二极管 14.10~15.00 线极化保持
    线-左旋圆极化转换
    ≥10 dB ≤2 dB 0.15λ0
    [41] 各向异性 PIN二极管 14.00~16.00 线极化保持
    线-左旋圆极化转换
    0.15λ0
    [42] 各向异性 PIN二极管 2.50~3.64 线极化保持
    线-右旋圆极化转换
    ≥15 dB ≤3 dB 0.07λ0
    [43] 各向异性 PIN二极管 1.00~3.74
    2.41~3.76
    2.48~3.79
    2.58~3.89
    线极化保持
    线-左旋圆极化转换
    线-右旋圆极化转换
    线-交叉线极化转换
    ≥10 dB ≤3 dB 0.37λ0
    [44] 各向异性 变容二极管 7.50~9.50 极化椭圆度–1至1 0.25λ0
    [45] 各向异性 变容二极管 10.00 极化方位角旋转 0.52λ0
    [46] 谐振腔型 PIN二极管 5.20~16.70
    8.00~14.30
    线极化保持
    线-交叉线极化转换
    ≥15 dB ≤3 dB 0.05λ0 60°
    [47] 谐振腔型 PIN二极管 7.80~10.80
    8.30~11.20
    线极化保持
    线-交叉线极化转换
    ≥10 dB ≤2 dB 0.08λ0
    [48] 谐振腔型 PIN二极管 2.39~3.21 线极化保持
    线-交叉线极化转换
    ≥20 dB ≤3 dB 0.44λ0
    [49] 谐振腔型 PIN二极管 2.76~4.24
    3.31~3.56
    线-左旋圆极化转换
    线-交叉线极化转换
    ≥20 dB 0.16λ0
    [50] 谐振腔型 PIN二极管 3.03~3.60 线极化方位角旋转 ≤2 dB 0.21λ0
    下载: 导出CSV

    表  3  反射型电控可重构极化调控超表面总结

    Table  3.   Summary of reflection-type electronically controlled reconfigurable polarization modulation metasurface

    文献 电控器件 工作频段(GHz) 极化调控能力 极化隔离度 插入损耗 剖面 入射角稳定性
    [51] PIN二极管 2.45~3.52 线极化保持
    线-交叉线极化转换
    ≤2 dB 0.07λ0
    [52] PIN二极管 4.00~14.00
    6.40~10.30
    线极化保持
    线-交叉线极化转换
    ≤0.1 dB
    0.03λ0
    15°
    [53] PIN二极管 3.83~4.74
    3.39~5.01
    线极化保持
    线-交叉线极化转换
    ≥10 dB ≤1 dB
    0.06λ0 85°
    30°
    [54] PIN二极管 7.60~23.60
    6.50~19.90
    线-左旋圆极化转换
    线-交叉线极化转换
    ≥10 dB
    ≤1 dB
    0.12λ0
    [55] PIN二极管 5.96~15.34
    6.05~14.76
    线-左旋圆极化转换
    线-交叉线极化转换
    ≥10 dB
    ≤1 dB
    0.09λ0 20°
    20°
    [56] PIN二极管 11.80~24.10
    10.50~13.90/17.70~27.20
    线-左旋圆极化转换
    线-交叉线极化转换
    ≥10 dB
    ≤3 dB
    0.07λ0 10°
    30°
    [57] PIN二极管 7.40~12.00 线/圆极化保持
    线/圆-交叉线/圆极化转换
    ≥10 dB ≤1 dB 0.07λ0 30°
    [58] PIN二极管 3.05~3.70 线极化保持
    线-左旋圆极化转换
    线-右旋圆极化转换

    ≤1.5 dB
    ≤1.5 dB
    0.03λ0
    [59] PIN二极管 2.00~3.66/8.46~9.52
    3.77~6.20
    7.75~8.60
    5.20~6.10
    极化保持
    线-交叉线极化转换
    线-左旋圆极化转换
    线-右旋圆极化转换
    ≥10 dB ≤1 dB
    ≤1 dB

    0.04λ0 15°
    [60] PIN二极管 9.80 线极化旋转 0.07λ0
    [61] 变容二极管 4.90~8.20
    3.90~7.90
    线-左旋圆极化转换
    线-交叉线极化转换
    ≥10 dB
    ≤2 dB
    0.08λ0 20°
    30°
    [62] MEMS 7.00~14.00 线极化保持
    线-交叉线极化转换
    ≤1 dB 0.05λ0 30°
    [63] MEMS 8.07~10.77
    7.93~12.42
    线-左旋圆极化转换
    线-交叉线极化转换

    ≤1 dB
    0.08λ0
    [64] MEMS 5.7~23.8 GHz
    5.6~23.5 GHz
    线-左旋圆极化转换
    线-交叉线极化转换

    ≤1 dB
    0.12λ0
    下载: 导出CSV

    表  4  透/反射一体型电控可重构极化调控超表面总结

    Table  4.   Summary of integrated transmission/reflection electrically controlled reconfigurable polarization modulation metasurfaces

    文献 电控器件 工作频段(GHz) 极化调控能力 插入损耗 剖面 入射角稳定性
    [65] PIN二极管 2.10 透射:线-交叉线极化转换
    反射:线极化保持
    ≤1 dB 0.02λ0
    [66] PIN二极管 9.70
    9.70
    4.62~13.56
    透射:线极化保持
    透射:线-交叉线极化转换
    反射:线极化保持
    ≤0.5 dB
    ≤0.5 dB
    ≤1 dB
    0.13λ0
    [67] PIN二极管 2.09~5.00
    2.29~3.16
    1.85~2.69
    1.72~2.53
    透射:线极化保持
    透射:线-左旋圆极化转换
    透射:线-交叉线极化转换
    反射:线极化保持
    ≤2 dB 0.46λ0
    [68] PIN二极管 4.90~7.00 透射:线-交叉线极化转换
    反射:线极化保持
    ≤2 dB 0.10λ0 40°
    下载: 导出CSV
  • [1] BORN M and WOLF E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 6th ed. New York: Pergamon Press, 1980: 36–67.
    [2] WAKAKI M, KOMACHI Y, MACHIDA H, et al. Fiber-optic polarizer using birefringent crystal as a cladding[J]. Applied Optics, 1996, 35(15): 2591–2594. doi: 10.1364/AO.35.002591.
    [3] 魏克珠, 潘健, 刘博, 等. 微波铁氧体器件与变极化应用[M]. 北京: 国防工业出版社, 2017: 113–120.

    WEI Kezhu, PAN Jian, LIU Bo, et al. Microwave Ferrite Device and Variable Polarization Application[M]. Beijing: National Defense Industry Press, 2017: 113–120.
    [4] SMITH D R, PENDRY J B, and WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788–792. doi: 10.1126/science.1096796.
    [5] SMITH D R and KROLL N. Negative refractive index in left-handed materials[J]. Physical Review Letters, 2000, 85(14): 2933–2936. doi: 10.1103/PhysRevLett.85.2933.
    [6] PENDRY J B. A chiral route to negative refraction[J]. Science, 2004, 306(5700): 1353–1355. doi: 10.1126/science.1104467.
    [7] LAROUCHE S, TSAI Y J, TYLER T, et al. Infrared metamaterial phase holograms[J]. Nature Materials, 2012, 11(5): 450–454. doi: 10.1038/nmat3278.
    [8] ZHENG Guoxing, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312. doi: 10.1038/nnano.2015.2.
    [9] JOHN-HERPIN A, TITTL A, KÜHNER L, et al. Metasurface-enhanced infrared spectroscopy: An abundance of materials and functionalities[J]. Advanced Materials, 2023, 35(34): 2110163. doi: 10.1002/adma.202110163.
    [10] LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9.
    [11] ALAEE R, ALBOOYEH M, and ROCKSTUHL C. Theory of metasurface based perfect absorbers[J]. Journal of Physics D: Applied Physics, 2017, 50(50): 503002. doi: 10.1088/1361-6463/aa94a8.
    [12] WEN Dandan, YUE Fuyong, KUMAR S, et al. Metasurface for characterization of the polarization state of light[J]. Optics Express, 2015, 23(8): 10272–10281. doi: 10.1364/OE.23.010272.
    [13] LIN Dianmin, FAN Pengyu, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298–302. doi: 10.1126/science.1253213.
    [14] LIU Xiaoming, ZHOU Yixin, WANG Chen, et al. Dual-band dual-rotational-direction angular stable linear-to-circular polarization converter[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 6054–6059. doi: 10.1109/tap.2021.3138533.
    [15] MAJEED A, ZHANG Jinling, ASHRAF M A, et al. An ultra-wideband linear-to-circular polarization converter based on a circular, pie-shaped reflective metasurface[J]. Electronics, 2022, 11(11): 1681. doi: 10.3390/electronics11111681.
    [16] VU T L and SEO C. A high angular stability, single-layer transmission linear-to-circular polarization converter for dual ISM-band operation[J]. IEEE Access, 2023, 11: 30188–30196. doi: 10.1109/access.2023.3261563.
    [17] DICANDIA F A and GENOVESI S. Linear-to-circular polarization transmission converter exploiting meandered metallic slots[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(11): 2191–2195. doi: 10.1109/lawp.2022.3188063.
    [18] YANG Pei, DANG Ruirong, and LI Lipin. Dual-linear-to-circular polarization converter based polarization-twisting metasurface antenna for generating dual band dual circularly polarized radiation in Ku-band[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9877–9881. doi: 10.1109/TAP.2022.3178803.
    [19] WANG Hongbin and CHENG Yujian. Single-layer dual-band linear-to-circular polarization converter with wide axial ratio bandwidth and different polarization modes[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(6): 4296–4301. doi: 10.1109/tap.2019.2905962.
    [20] SOFI M A, SAURAV K, and KOUL S K. Linear-to-circular polarization converter with wide angular stability and near unity ellipticity—application to linearly polarized antenna array[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(12): 4779–4783. doi: 10.1109/tcsii.2022.3196385.
    [21] XU Peng, JIANG Weixiang, WANG Shenyun, et al. An ultrathin cross-polarization converter with near unity efficiency for transmitted waves[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4370–4373. doi: 10.1109/TAP.2018.2839972.
    [22] LIU Chuan, GAO Renjing, WANG Qi, et al. A design of ultra-wideband linear cross-polarization conversion metasurface with high efficiency and ultra-thin thickness[J]. Journal of Applied Physics, 2020, 127(15): 153103. doi: 10.1063/1.5143831.
    [23] DEY S, DEY S, and KOUL S K. Miniaturized dual stop band frequency selective surface with broadband linear co to cross polarization conversion ability[J]. International Journal of RF and Microwave Computer‐Aided Engineering, 2021, 31(9): e22779. doi: 10.1002/mmce.22779.
    [24] SONG Kun, LIU Yahong, LUO Chunrong, et al. High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial[J]. Journal of Physics D: Applied Physics, 2014, 47(50): 505104. doi: 10.1088/0022-3727/47/50/505104.
    [25] LIU Chuan, GAO Renjing, LIU Shutian, et al. Meander-line based high-efficiency ultrawideband linear cross-polarization conversion metasurface[J]. Applied Physics Express, 2021, 14(7): 074001. doi: 10.35848/1882-0786/ac0b06.
    [26] BAGHEL A K, KULKARNI S S, and NAYAK S K. Linear-to-cross-polarization transmission converter using ultrathin and smaller periodicity metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1433–1437. doi: 10.1109/lawp.2019.2919423.
    [27] FEI Peng, VANDENBOSCH G A E, GUO Weihua, et al. Versatile cross-polarization conversion chiral metasurface for linear and circular polarizations[J]. Advanced Optical Materials, 2020, 8(13): 2000194. doi: 10.1002/adom.202000194.
    [28] LIN Baoqin, GUO Jianxin, LV Lintao, et al. Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves[J]. Applied Physics A, 2019, 125(2): 76. doi: 10.1007/S00339-018-2368-9.
    [29] PENG Lin, LI Xiaofeng, JIANG Xing, et al. A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by Graphene[J]. Journal of Lightwave Technology, 2018, 36(19): 4250–4258. doi: 10.1109/JLT.2018.2836904.
    [30] LIN Baoqin, HUANG Wenzhun, GUO Jianxin, et al. A high efficiency ultra-wideband circular-to-linear polarization conversion metasurface[J]. Optics Communications, 2023, 529: 129102. doi: 10.1016/j.optcom.2022.129102.
    [31] SUN Xiaoning, QU Zhaoming, YUAN Jianghang, et al. Reconfigurable broadband polarisation conversion metasurface based on VO2[J]. Photonics and Nanostructures-Fundamentals and Applications, 2022, 50: 101012. doi: 10.1016/j.photonics.2022.101012.
    [32] ZHU H L, CHEUNG S W, LIU X H, et al. Design of polarization reconfigurable antenna using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 2891–2898. doi: 10.1109/tap.2014.2310209.
    [33] LI Long, LI Yongjiu, WU Zhao, et al. Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces[J]. Proceedings of the IEEE, 2015, 103(7): 1057–1070. doi: 10.1109/jproc.2015.2437611.
    [34] CERVENY M, FORD K L, and TENNANT A. Reflective switchable polarization rotator based on metasurface with PIN diodes[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1483–1492. doi: 10.1109/tap.2020.3026883.
    [35] DE LUSTRAC A, RATNI B, PIAU G P, et al. Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities[J]. ACS Applied Electronic Materials, 2021, 3(3): 1184–1190. doi: 10.1021/acsaelm.0c01038.
    [36] XU Shitong, FAN Fei, CAO Hongzhong, et al. Liquid crystal integrated metamaterial for multi-band terahertz linear polarization conversion[J]. Chinese Optics Letters, 2021, 19(9): 093701. doi: 10.3788/COL202119.093701.
    [37] VASIĆ B, ZOGRAFOPOULOS D C, ISIĆ G, et al. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals[J]. Nanotechnology, 2017, 28(12): 124002. doi: 10.1088/1361-6528/aa5bbd.
    [38] MA Xiaoliang, PAN Wenbo, HUANG Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945–949. doi: 10.1002/adom.201400212.
    [39] LI Wenting, GAO S, CAI Yuanming, et al. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4470–4477. doi: 10.1109/tap.2017.2730240.
    [40] LI Wei, XIA Song, HE Bin, et al. A reconfigurable polarization converter using active metasurface and its application in horn antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5281–5290. doi: 10.1109/tap.2016.2620484.
    [41] SOFI M A, SAURAV K, and KOUL S K. A linear to circular polarization reconfigurable converter based on frequency selective surface[J]. Microwave and Optical Technology Letters, 2021, 63(5): 1425–1433. doi: 10.1002/mop.32779.
    [42] ZHU Shuangshuang, WANG Ping, ZHANG Yong, et al. A reconfigurable polarization converter and related application as horn antenna cladding[J]. Journal of Applied Physics, 2023, 133(2): 023102. doi: 10.1063/5.0130212.
    [43] ZHOU Hongcheng, YU Xiaoran, WANG Ping, et al. Wideband linear-to-multi-polarization converter based on active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5246–5255. doi: 10.1109/tap.2023.3256581.
    [44] HUANG Chenxi, ZHANG Jingjing, CHENG Qiang, et al. Polarization modulation for wireless communications based on metasurfaces[J]. Advanced Functional Materials, 2021, 31(36): 2103379. doi: 10.1002/adfm.202103379.
    [45] WU Zhanni, RA’DI Y, and GRBIC A. Tunable metasurfaces: A polarization rotator design[J]. Physical Review X, 2019, 9(1): 011036. doi: 10.1103/PhysRevX.9.011036.
    [46] LI You, CAO Qunsheng, and WANG Yi. A wideband multifunctional multilayer switchable linear polarization metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1314–1318. doi: 10.1109/lawp.2018.2843816.
    [47] WEI Zeyong, ZHAO Yunlong, ZHANG Yujing, et al. High-efficiency modulation of broadband polarization conversion with a reconfigurable chiral metasurface[J]. Nanoscale Advances, 2022, 4(20): 4344–4350. doi: 10.1039/d2na00382a.
    [48] WANG Ping, LIN Feihong, WANG Yu, et al. Tunable polarization converter with high polarization isolation based on metasurface and its application on horn antenna[J]. Applied Physics A, 2022, 128(10): 863. doi: 10.1007/s00339-022-05930-1.
    [49] WANG Ping, WANG Yu, YAN Zhongming, et al. Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions[J]. Chinese Physics B, 2022, 31(12): 124201. doi: 10.1088/1674-1056/ac8ce0.
    [50] WANG Ping, QIN Yifei, WANG Yu, et al. Wideband switchable linear polarization rotator based on metasurface[J]. Applied Physics Letters, 2023, 123(1): 011701. doi: 10.1063/5.0155015.
    [51] SAIKIA M, GHOSH S, and SRIVASTAVA K V. Switchable reflective metamaterial polarisation rotator[J]. Electronics Letters, 2016, 52(12): 1030–1032. doi: 10.1049/el.2016.0742.
    [52] WANG Fuwei, LI Ke, and REN Yuhui. Reconfigurable polarization rotation surfaces applied to the wideband antenna radar cross section reduction[J]. International Journal of RF and Microwave Computer‐Aided Engineering, 2018, 28(5): e21262. doi: 10.1002/mmce.21262.
    [53] SUN Shangyi, JIANG Wen, GONG Shuxi, et al. Reconfigurable linear-to-linear polarization conversion metasurface based on PIN diodes[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1722–1726. doi: 10.1109/LAWP.2018.2864797.
    [54] TIAN Jianghao, CAO Xiangyu, GAO Jun, et al. A reconfigurable ultra-wideband polarization converter based on metasurface incorporated with PIN diodes[J]. Journal of Applied Physics, 2019, 125(13): 135105. doi: 10.1063/1.5067383.
    [55] YANG Heng, WANG Shicong, LI Peng, et al. A broadband multifunctional reconfigurable polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5759–5767. doi: 10.1109/TAP.2023.3266498.
    [56] YANG Zhengyi, KOU Na, YU Shixing, et al. Reconfigurable multifunction polarization converter integrated with PIN diode[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 557–560. doi: 10.1109/LMWC.2021.3064039.
    [57] LIU Wei, KE Junchen, XIAO Cong, et al. Broadband polarization-reconfigurable converter using active metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(4): 3725–3730. doi: 10.1109/TAP.2023.3240861.
    [58] BHATTACHARJEE A and DWARI S. Design of an anisotropic reconfigurable reflective polarization converter for realizing circular polarization-reconfigurable antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2392–2396. doi: 10.1109/LAWP.2022.3194347.
    [59] PRAMANIK S, BAKSHI S C, KOLEY C, et al. Active metasurface-based reconfigurable polarization converter with multiple and simultaneous functionalities[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 22(3): 522–526. doi: 10.1109/lawp.2022.3217130.
    [60] MA Qian, HONG Qiaoru, BAI Guodong, et al. Editing arbitrarily linear polarizations using programmable metasurface[J]. Physical Review Applied, 2020, 13(2): 021003. doi: 10.1103/PhysRevApplied.13.021003.
    [61] GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi: 10.1109/TAP.2018.2866636.
    [62] 于惠存, 曹祥玉, 高军, 等. 一种宽带可重构反射型极化旋转表面[J]. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041.

    YU Huicun, CAO Xiangyu, GAO Jun, et al. Broadband reconfigurable reflective polarization convertor[J]. Acta Physica Sinica, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041.
    [63] YU Huicun, CAO Xiangyu, GAO Jun, et al. Design of a wideband and reconfigurable polarization converter using a manipulable metasurface[J]. Optical Materials Express, 2018, 8(11): 3373–3381. doi: 10.1364/OME.8.003373.
    [64] GUO Zexu, CAO Xiangyu, GAO Jun, et al. A novel reconfigurable metasurface with coincident and ultra-wideband LTL and LTC polarization conversion functions[J]. Radioengineering, 2019, 28(4): 696–702. doi: 10.13164/re.2019.0696.
    [65] TAO Zui, WAN Xiang, PAN Baicao, et al. Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface[J]. Applied Physics Letters, 2017, 110(12): 121901. doi: 10.1063/1.4979033.
    [66] LI You, WANG Yi, and CAO Qunsheng. Design of a multifunctional reconfigurable metasurface for polarization and propagation manipulation[J]. IEEE Access, 2019, 7: 129183–129191. doi: 10.1109/ACCESS.2019.2939200.
    [67] WANG Ping, ZHANG Yong, WANG Yu, et al. Multifunctional polarization converter based on multilayer reconfigurable metasurface[J]. Defence Technology, 2023, 28: 136–145. doi: 10.1016/j.dt.2022.12.008.
    [68] YANG Jianing, ZHANG Yanting, TANG Mingchun, et al. A reconfigurable asymmetric-transmission metasurface for dynamic manipulation of transmission, reflection, and polarization[J]. Journal of Applied Physics, 2023, 133(8): 083101. doi: 10.1063/5.0134540.
    [69] SHI Xin, QIU Tianshuo, WANG Jiafu, et al. Metasurface inverse design using machine learning approaches[J]. Journal of Physics D: Applied Physics, 2020, 53(27): 275105. doi: 10.1088/1361-6463/ab8036.
    [70] HU Yanwen, MA Yaodong, ZHANG Tingrong, et al. Inverse design of transmission-type linear-to-circular polarization control metasurface based on deep learning[J]. Journal of Physics D: Applied Physics, 2023, 56(47): 475001. doi: 10.1088/1361-6463/acefdf.
  • 期刊类型引用(4)

    1. 杨帆,何嘉岳,杨瑶佳,金一飞,许慎恒,李懋坤. 界面电磁学的理论与应用. 微波学报. 2023(05): 52-61 . 百度学术
    2. 王禄炀,兰峰,宋天阳,何贵举,潘一博,张雅鑫,陈智,杨梓强. 多功能动态波束调控的太赫兹编码超表面. 无线电通信技术. 2022(02): 247-252 . 百度学术
    3. 周嵩林,唐隽文,刘罗颢,吴优,刘长昊,金一飞,杨帆,许慎恒,李懋坤. 基于电磁表面的阵列天线及应用概述. 通信学报. 2022(12): 13-23 . 百度学术
    4. 李国英,嵇成高,于刚刚,关浩. 相控雷达成像测井仪器中收发天线系统设计. 测井技术. 2022(06): 696-700+706 . 百度学术

    其他类型引用(1)

  • 加载中
图(9) / 表(4)
计量
  • 文章访问数: 1252
  • HTML全文浏览量: 289
  • PDF下载量: 544
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-11-28
  • 修回日期:  2024-01-22
  • 网络出版日期:  2024-02-23
  • 刊出日期:  2024-06-28

目录

/

返回文章
返回