一种InSAR建筑物图像仿真及高程反演方法

王超 仇晓兰 李芳芳 雷斌

赵博, 黄磊, 周汉飞, 张亮, 李强, 黄敏. 基于单频时变阈值的1-bit SAR成像方法研究[J]. 雷达学报, 2018, 7(4): 446-454. doi: 10.12000/JR18036
引用本文: 王超, 仇晓兰, 李芳芳, 等. 一种InSAR建筑物图像仿真及高程反演方法[J]. 雷达学报, 2020, 9(2): 373–385. doi: 10.12000/JR20010
Zhao Bo, Huang Lei, Zhou Hanfei, Zhang Liang, Li Qiang, Huang Min. 1-bit SAR Imaging Method Based on Single-frequency Time-varying Threshold[J]. Journal of Radars, 2018, 7(4): 446-454. doi: 10.12000/JR18036
Citation: WANG Chao, QIU Xiaolan, LI Fangfang, et al. An InSAR image simulation and elevation inversion method for buildings[J]. Journal of Radars, 2020, 9(2): 373–385. doi: 10.12000/JR20010

一种InSAR建筑物图像仿真及高程反演方法

DOI: 10.12000/JR20010
基金项目: 国家自然科学基金(61991420, 61991421)
详细信息
    作者简介:

    王 超(1995–),男,籍贯山西,天津大学学士,中国科学院空天信息创新研究院在读硕士生,研究方向为InSAR典型建筑三维重建。E-mail: wangchao173@mails.ucas.edu.cn

    仇晓兰(1982–),女,籍贯江苏,中国科学院空天信息创新研究院研究员,博士生导师,研究方向为合成孔径雷达成像处理与应用、遥感大数据分析与信息提取。E-mail: xlqiu@mail.ie.ac.cn

    李芳芳(1986–),女,籍贯山西,中国科学院空天信息创新研究院副研究员,研究方向为干涉合成孔径雷达信号处理、SAR三维成像。E-mail: ffli1@mail.ie.ac.cn

    雷 斌(1978–),男,中国科学院空天信息创新研究院研究员,研究方向为合成孔径雷达数据处理与图像理解、遥感图像处理与信息提取、空间信息处理系统体系结构。E-mail: leibin@mail.ie.ac.cn

    通讯作者:

    仇晓兰 xlqiu@mail.ie.ac.cn

  • 责任主编:靳国旺 Corresponding Editor: JIN Guowang
  • 中图分类号: TN959.1+7

An InSAR Image Simulation and Elevation Inversion Method for Buildings

Funds: The National Natural Science Foundation of China (61991420, 61991421)
More Information
  • 摘要: 城市建筑区域叠掩、阴影严重,图像理解困难且干涉相位变化复杂紊乱,一直是InSAR处理的困难区域。SAR图像仿真能为图像理解和处理方法研究提供数据支撑,然而现有建筑区域SAR图像仿真方法大多无法获得具有相干性的干涉SAR图像对。该文提出了一种面向建筑区域的干涉SAR复图像对仿真方法,能够获得建筑的复数图像对、干涉相位图以及叠掩成分数目等信息,为城区干涉SAR处理及信息提取研究提供仿真数据支撑。同时,基于仿真中对相位变化规律的分析,提出叠掩区相位解缠时的基准确定方法,解决传统解缠方法面临的叠掩区域干涉相位不连续问题,进而反演建筑高程信息。最后,通过建模仿真结果与实际SAR图像和干涉相位的对比,验证了仿真方法的正确性,并对仿真及实际干涉相位进行解缠和高程反演处理,验证了该文高程反演方法的有效性。

     

  • 海用雷达在对海上目标探测过程中易受海杂波影响,高海况、复杂气象条件下尤为严重。开展海杂波特性、海杂波抑制、海上目标检测跟踪与识别方法研究[1-5],需要多种条件下的海杂波和海上目标回波实测数据,海军航空大学海上目标探测课题组于2019年提出一项“雷达对海探测数据共享计划”[6],旨在利用X波段固态全相参雷达等多型雷达开展对海探测试验,获取不同海况、分辨率、擦地角条件下海杂波数据和海上目标回波数据,并同步获取海洋气象水文数据、目标位置与轨迹的真实数据,形成信息全记录的雷达试验数据集。

    2020年度主要开展了3个方面的多次试验,包括目标雷达散射截面积(Radar Cross-Section, RCS)定标数据采集试验、不同海况海杂波与目标探测数据采集试验、海上机动目标检测跟踪数据采集试验。下面针对每个方面的试验进行介绍,并给出典型数据示例。

    目标RCS定标数据采集试验,主要是在海上投放定标体(不锈钢球,RCS为0.25 m2),使其漂浮于海面以上,用船只拖拽定标体沿雷达径向慢速往返运动,在沿途部分位置点静止(漂浮),雷达工作模式固定不变,采集试验全程的雷达与配合传感器数据。

    图1所示,试验期间,雷达架设地点为烟台养马岛试验点[6],架高约为30 m。如图2所示,渔船用尼龙绳拖拽不锈钢球沿图1中所示的航线慢速运动。不锈钢球放置在4个泡沫塑料浮子上,使其完全浮于海面以上,如图2(d)所示,渔船与不锈钢球沿雷达径向的间距为100 m以上,且二者在方位上也错开一定的角度。渔船在设定海上航线的部分位置点(见图1所示航线中的黄色圆点)处静止(漂浮),此时调整了雷达天线转速,采集多种转速条件下的雷达数据。试验期间海面状态如图2(f)所示,对应的气象水文数据如图3所示,红色原点与试验时段相对应,每15 min更新一次,综合判断海况等级为1级。

    图  1  试验点及定标体运动轨迹示意图
    Figure  1.  Experimental site and schematic diagram of calibration body’s trajectory
    图  2  试验场景
    Figure  2.  Experimental scenario
    图  3  浪(有效波高、浪向、周期、浪速)和风(风向、风速)要素信息(红色标点对应试验时段)
    Figure  3.  Wave (effective wave height, direction, period, speed) and wind (direction, speed) information (The red punctuation marks correspond to the experimental period)

    X波段试验雷达具体参数请见文献[6],此处不再赘述。试验期间,定标体在较近距离时雷达工作于3 nm量程,脉冲重复频率(Pulsed Repetitive Frequency, PRF)为3 kHz;定标体在较远距离时雷达工作于6 nm量程,PRF为1.6 kHz。整个试验过程中,雷达主要工作于2 r/min的扫描速度,在目标静止(漂浮)时天线转速有所调整。雷达工作模式调整与采集雷达数据对应的情况,在与数据配套的数据记录表中有详细对照说明。由于雷达转速较慢,单次扫描周期的数据量大,这里仅给出了目标所在扇区的回波数据,示例数据如图4所示。

    图  4  典型数据示例
    Figure  4.  Typical data examples

    试验过程中,还同步获取了渔船的自动定位系统(Automatic Identification System, AIS)数据(MMSI: 413659899,见表1),以及雷达视野内其他非合作船只目标的AIS数据。由于试验中所使用AIS设备自身原因,数据更新率为每次2~6 min,因此,AIS给出的位置信息与雷达给出的位置信息并不严格同步,在数据使用中可通过插值实现时空信息同步。

    表  1  配试船只目标AIS数据示例
    Table  1.  The sample AIS data of the experimental boat
    东经(°)北纬(°)时间
    121.6096537.474042020-07-08 09:10:00
    121.6113437.475512020-07-08 09:38:00
    121.6127537.4766852020-07-08 09:40:00
    121.6162837.4790152020-07-08 09:42:00
    ·········
    121.6250737.483452020-07-08 13:50:00
    121.6212437.4802552020-07-08 13:56:00
    121.6180337.47742020-07-08 13:58:00
    下载: 导出CSV 
    | 显示表格

    海杂波与目标探测数据采集试验,主要是采集不同海况等级条件下的海杂波数据、海上船只目标数据。此试验以天线凝视观测模式为主,采集不同方位下的雷达回波数据。

    试验期间,雷达架设地点为烟台第1海水浴场试验点,如图5所示,架高约为80 m,在不同海况等级等环境下,调整雷达天线凝视的方位,凝视海面锚泊船只或航道浮标,采集几秒至几分钟时长不等的雷达凝视模式数据。采集数据时雷达工作量程为3 nm, 6 nm,对应的PRF分别为3.0 kHz, 1.6 kHz。

    图  5  海杂波与目标探测试验场景
    Figure  5.  Sea clutter and target detection experimental scenario

    采集数据列表如表2所示。前7组数据均为天线凝视模式数据,由于采集数据期间,风速较大,雷达天线凝视方位随风有轻微偏移,具体偏移情况从雷达数据头中的“方位”信息位中可以得到;第8组数据为天线扫描模式数据,其中方位143°~274°范围内为发射屏蔽区,此区域内雷达发射静默。此外,扫描模式数据还有配套的AIS数据,但由于试验时海况等级较高,所有船只均回港避风,因此无运动目标,仅有锚泊的船只和航道浮标两类目标。

    表  2  海杂波与目标回波数据列表
    Table  2.  List of sea clutter and target echo data
    序号数据类型海况等级(级)凝视方位(°)脉冲个数描述信息
    1海杂波3~41.53>1044.84 km处有一个航道浮标
    2海杂波3~442.18>104纯海杂波
    3海杂波3~448.36>104近程为纯海杂波,6 km后有岛屿回波
    4海杂波+目标3~417.36>1042.778 km和4.115 km处有2个漂浮目标(船+航道浮标)
    5海杂波+目标3~48.01>1042.81 km和4.16 km处有2个漂浮强目标(2艘锚泊船只),5.5 km后为岛屿回波
    6海杂波+目标29.58>104小快艇,回波较强,距离8.15 km进入雷达视野而后离开,存在同频异步干扰
    7海杂波+目标258.31>1043.86 km和7.15 km处有2个目标(船+岛屿)
    8海杂波+目标3~4扇区:257~360
    0~126
    9个扫描周期24 r/min扫描模式数据,有配套AIS数据
    下载: 导出CSV 
    | 显示表格

    典型的海杂波数据、海杂波+目标数据如图6(a)图6(d)所示,限于篇幅,这里仅给出两组实测数据的时域原始回波与多普勒谱。

    6  海杂波、目标回波典型数据示例
    6.  Typical sea clutter and target echo data

    海上机动目标检测跟踪数据采集试验,主要是利用小型快艇作为配试目标,沿预定航线运动,并在某些特定位置点进行机动,雷达工作于扫描模式,采集试验全程的雷达与配合传感器数据。

    试验期间,雷达架设地点为烟台第1海水浴场试验点,架高约为80 m,如图5所示。雷达工作于6 nm量程、24 r/min的扫描模式,PRF为1.6 kHz。试验时间为14:32—15:18,共采集1186个连续扫描周期数据,雷达工作模式调整与采集雷达数据对应的情况,在与数据配套的数据记录表中有详细说明。典型试验数据示例如图7所示,试验期间风和浪要素数据如图8所示,有效波高为1 m左右,综合判断海况等级为3级。

    图  7  雷达数据示例
    Figure  7.  Typical radar echo data
    图  8  浪(有效波高、浪向、周期、浪速)和风(风向、风速)要素信息(红色标点对应试验时段)
    Figure  8.  Wave (effective wave height, direction, period, speed) and wind (direction, speed) information (The red punctuation marks correspond to the experimental period)

    配试目标为约10 m长小型快艇,如图9所示,沿预定航线行驶,示意图如图10所示,受海上航道来往船只影响,小快艇的实际航线与预定航线有偏差。快艇上安装了AIS设备,具体位置信息可查阅AIS数据(MMSI: 413659899),如表3所示。此外,试验时还同步记录了雷达视野内非合作目标的AIS信息,可用作参考。

    图  9  配试目标
    Figure  9.  Experimental target
    图  10  设定航线
    Figure  10.  Set trajectory
    表  3  配试船只目标AIS数据示例
    Table  3.  The sample AIS data for experimental boat
    东经(°)北纬(°)时间
    121.420637.5512582020-07-22 14:32:00
    121.42177637.5532262020-07-22 14:34:00
    121.428837.5611042020-07-22 14:40:00
    121.4301637.5591052020-07-22 14:42:00
    ·········
    121.4365137.5536542020-07-22 15:14:00
    121.4317737.548672020-07-22 15:16:00
    121.428837.5476382020-07-22 15:18:00
    下载: 导出CSV 
    | 显示表格

    “雷达对海探测数据共享计划”2020年度完成了雷达目标RCS定标数据采集试验、不同海况海杂波与目标探测数据采集试验、海上机动目标检测跟踪数据采集试验3个方面的多次试验,获取了不同海况、目标以及雷达工作模式下的海杂波与目标回波数据,并同步获取了风和浪要素数据、目标AIS数据、可见光/红外数据等配合传感器数据。同时在试验过程中也发现了一些问题,例如目标AIS信息更新率过慢,导致将目标AIS数据作为真值数据使用时,与雷达数据存在严重的数据时空不匹配;可见光/红外设备数据在恶劣天气下获取图像不清晰或难以获取远距离目标图像;现有雷达在高海况、恶劣天气下天线凝视方位不稳定等问题,后续还需不断解决。

    X波段雷达对海探测实测数据的公开共享将依托雷达学报官方网站进行,试验数据于每次试验后上传至“数据/雷达对海探测数据”页面中(如附图1所示),具体网址为http://radars.ie.ac.cn/web/data/getData?dataType=DatasetofRadarDetectingSea,数据将根据对海探测试验进度定期更新。

    2020年度对海探测实测数据量巨大,因此截取具有代表性的试验段数据分3期发布,数据发布信息表如附表1所示。

    第1期主要发布海杂波与目标凝视模式探测数据,分为两组,包括纯海杂波数据、海杂波+目标回波数据,数据量约17 GB;第2期主要发布雷达目标RCS定标试验数据,提供下载的数据为截取的配试船拖不锈钢球向雷达运动阶段的数据,数据量大于20 GB;第3期主要发布海上机动目标检测跟踪试验数据,提供下载的数据是截取的配试快艇沿图10所示航线中右上方第1个圆运动的数据,数据量不低于40 GB。

    1  雷达对海探测数据发布地址
    1.  Release address of sea-detecting radar data
    1  2020年度数据发布信息表
    1.  Annual data release information table of 2020
    发布期号试验日期海况等级(级)数据量(GB)雷达天线
    工作模式
    发射脉冲
    模式
    目标位置
    信息记录
    气象水文
    数据
    12021.01.04~
    2021.01.06
    2~4>10凝视、扫描模式2有距离方位记录
    22020.07.081~2>20扫描(2 r/min为主)模式2有船只AIS数据
    32020.07.223>40扫描(24 r/min为主)模式2有船只AIS数据+5个航道浮标距离方位记录
    注:① 所有雷达数据均为脉压后的I/Q复数据;② 发射脉冲模式2,对应每个重复周期雷达相继发射1个单载频脉冲和1个LFM脉冲;③ AIS数据更新周期较长,约2 min更新一次,与雷达目标数据率不匹配;④ 数据格式与2019年度第1期数据格式相同[6]
    下载: 导出CSV 
    | 显示表格
  • 图  1  SAR图像对仿真流程

    Figure  1.  The simulation method for SAR image pair

    图  2  SAR图像仿真几何设定

    Figure  2.  The simulation geometry for SAR image

    图  3  散射点投影几何

    Figure  3.  The projection geometry of scattering points

    图  4  叠掩成分数目分析示意图

    Figure  4.  Illustration for the number of layover contributors

    图  5  叠掩区域散射点的角度关系

    Figure  5.  The angle of layover points

    图  6  叠掩成分数目计算流程

    Figure  6.  Calculation method for the number of layover contributors

    图  7  干涉SAR测量几何

    Figure  7.  InSAR measurement geometry

    图  8  叠掩掩膜图指导下的相位解缠流程

    Figure  8.  The phase-unwrapping method guided by the layover mask

    图  9  解缠相位基准确定

    Figure  9.  Determination of the unwrapped phase reference

    图  10  两栋建筑物的实际干涉SAR图像与相位和其光学图

    Figure  10.  The real SAR image pair, interferometric phase, and optical image of the two buildings

    图  11  建筑三维模型

    Figure  11.  3D model for the buildings

    图  12  建筑仿真图像

    Figure  12.  The simulation results of the buildings

    图  13  仿真图像与实际图像配准后伪彩色显示结果

    Figure  13.  The pseudo-color image for the registration result of the simulated and the real images

    图  14  叠掩成分数目分析

    Figure  14.  Analysis of the number of layover contributors

    图  15  对本文InSAR仿真数据的建筑高程反演结果

    Figure  15.  The elevation inversion results of the simulated images using our method

    图  16  TerraSAR-X重轨干涉SAR数据的建筑高程反演结果

    Figure  16.  The elevation inversion results of the TerraSAR-X InSAR images

    表  1  TerraSAR参数及仿真参数

    Table  1.   Parameters of TerraSAR images and simulation

    图像参数取值
    TerraSAR
    及仿真
    距离向分辨率(m)0.4547
    方位向分辨率(m)0.1670
    主图像下视角(°)54.52
    辅图像下视角(°)54.49
    仿真图像大小(距离,方位)(500, 600)
    主雷达位置(m)(0, 500160.3, –356368.6)
    基线向量(m)(51.52, –188.1, –238.0)
    相位噪声模型标准差为π/4的高斯随机噪声
    下载: 导出CSV

    表  2  建筑物高程反演结果

    Table  2.   The elevation inversion results of the buildings

    建筑序号三维模型建筑
    高度(m)
    仿真图像重建高度真实图像重建高度
    均值(m)标准差(m)均值(m)标准差(m)
    1100.5101.391.2099.754.48
    291.692.842.5693.692.31
    398.499.902.3599.103.17
    488.3\\\\
    下载: 导出CSV
  • [1] LIU Dawei, SUN Guoqing, GUO Zhifeng, et al. Three-dimensional coherent radar backscatter model and simulations of scattering phase center of forest canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 349–357. doi: 10.1109/TGRS.2009.2024301
    [2] LIU Dawei, DU Yang, SUN Guoqing, et al. Analysis of InSAR sensitivity to forest structure based on radar scattering model[J]. Progress in Electromagnetics Research, 2008, 84: 149–171. doi: 10.2528/PIER08071802
    [3] XUE Fengli and XU Feng. Scattering verification and imaging of vegetation and its components[C]. The 2018 12th International Symposium on Antennas, Propagation and EM Theory, Hangzhou, China, 2018: 1–4.
    [4] XUE Fengli and XU Feng. Coherent scattering and PolinSAR imaging simulation of fractal trees[C]. 2018 China International SAR Symposium, Shanghai, China, 2018: 1–4.
    [5] XU Feng, JIN Yaqiu, and MOREIRA A. A preliminary study on SAR advanced information retrieval and scene reconstruction[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1443–1447. doi: 10.1109/LGRS.2016.2590878
    [6] 张红敏, 靳国旺, 徐青, 等. 多基线InSAR干涉图的直接法仿真[J]. 测绘科学技术学报, 2010, 27(2): 127–130. doi: 10.3969/j.issn.1673-6338.2010.02.014

    ZHANG Hongmin, JIN Guowang, XU Qing, et al. Direct algorithm for simulation of multi-baseline InSAR interferograms[J]. Journal of Geomatics Science and Technology, 2010, 27(2): 127–130. doi: 10.3969/j.issn.1673-6338.2010.02.014
    [7] 靳国旺, 徐青, 张红敏. 合成孔径雷达干涉测量[M]. 北京: 国防工业出版社, 2014: 176–179.

    JIN Guowang, XU Qing, and ZHANG Hongmin. Synthetic Aperture Radar Interferometry[M]. Beijing: National Defense Industry Press, 2014: 176–179.
    [8] AUER S, HINZ S, BAMLER R, et al. Ray-tracing simulation techniques for understanding high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1445–1456. doi: 10.1109/TGRS.2009.2029339
    [9] AUER S. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D]. [Ph.D. dissertation], Technische Universität München, 2011: 62–76.
    [10] HAMMER H and SCHULZ K. SAR-simulation of large urban scenes using an extended ray tracing approach[C]. 2011 Joint Urban Remote Sensing Event, Munich, Germany, 2011: 289–292.
    [11] 孙造宇, 梁甸农, 张永胜. 星载InSAR系统DEM重建及其误差分析[J]. 电子与信息学报, 2008, 30(6): 1336–1340. doi: 10.3724/SP.J.1146.2006.01735

    SUN Zaoyu, LIANG Diannong, and ZHANG Yongsheng. Method and error analysis of DEM reconstruction for spaceborne InSAR[J]. Journal of Electronics &Information Technology, 2008, 30(6): 1336–1340. doi: 10.3724/SP.J.1146.2006.01735
    [12] 林雪, 李曾玺, 李芳芳, 等. 一种自适应迭代的非局部干涉相位滤波方法[J]. 雷达学报, 2014, 3(2): 166–175. doi: 10.3724/SP.J.1300.2014.13123

    LIN Xue, LI Zengxi, LI Fangfang, et al. An adaptive iterated nonlocal interferometry filtering method[J]. Journal of Radars, 2014, 3(2): 166–175. doi: 10.3724/SP.J.1300.2014.13123
    [13] 靳国旺. InSAR获取高精度DEM关键处理技术研究[D]. [博士论文], 解放军信息工程大学, 2007: 141–146.

    JIN Guowang. Research on key processing techniques for deriving accurate DEM from InSAR[D]. [Ph.D. dissertation], Information Engineering University, 2007: 141–146.
    [14] 王彦兵, 洪伟, 李小娟, 等. 基于D-InSAR技术的北京城区地面沉降监测[J]. 测绘通报, 2016(5): 66–68, 79.

    WANG Yanbing, HONG Wei, LI Xiaojuan, et al. Monitoring of land subsidence in Beijing based on D-InSAR[J]. Bulletin of Surveying and Mapping, 2016(5): 66–68, 79.
    [15] 王青松, 时信华, 黄海风, 等. 星载干涉SAR阴影及叠掩区域相位重构方法[J]. 系统工程与电子技术, 2010, 32(4): 699–702.

    WANG Qingsong, SHI Xinhua, HUANG Haifeng, et al. Method of spaceborne InSAR shadow and layover phase reconstruction[J]. Systems Engineering and Electronics, 2010, 32(4): 699–702.
    [16] CELLIER F and COLIN E. Building height estimation using fine analysis of altimetric mixtures in layover areas on polarimetric interferometric X-band SAR images[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 4004–4007.
    [17] LIU Bin, TUPIN F, LIU Xingzhao, et al. Characterization and extraction of building layovers in urban areas using high resolution SAR imagery[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS, Melbourne, Australia, 2013: 895–898.
    [18] 张同同, 杨红磊, 李东明, 等. SAR影像中叠掩与阴影区域的识别——以湖北巴东为例[J]. 测绘通报, 2019(11): 85–88.

    ZHANG Tongtong, YANG Honglei, LI Dongming, et al. Identification of layover and shadows regions in SAR images——Taking Badong as an example[J]. Bulletin of Surveying and Mapping, 2019(11): 85–88.
    [19] ROSSI C and EINEDER M. High-resolution InSAR building layovers detection and exploitation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6457–6468. doi: 10.1109/TGRS.2015.2440913
    [20] YU Hanwen, LAN Yang, YUAN Zhihui, et al. Phase unwrapping in InSAR: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1): 40–58. doi: 10.1109/MGRS.2018.2873644
    [21] POV-Ray 3.6.1 documentation[EB/OL]. http://www.povray.org/documentation/index-3.6.php.
    [22] CHEN Jiankun, PENG Lingxiao, QIU Xiaolan, et al. A 3D building reconstruction method for SAR images based on deep neural network[J]. SCIENTIA SINICA Informationis, 2019, 49(12): 1606–1625.
    [23] SUN Y, HUA Y, MOU L, et al. Large-scale building height estimation from single VHR SAR image using fully convolutional network and GIS building footprints[C]. 2019 Joint Urban Remote Sensing Event, Vannes, France, 2019: 1–4.
    [24] HERRÁEZ M A, BURTON D R, LALOR M J, et al. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path[J]. Applied Optics, 2003, 41(35): 7437–7444.
    [25] NIU Shengren, QIU Xiaolan, LEI Bin, et al. Parameter prediction method of SAR target simulation based on convolutional neural networks[C]. The 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–5.
  • 期刊类型引用(35)

    1. 方蕊,彭章友. 基于广播电视卫星的双基海杂波建模与实测数据分析. 工业控制计算机. 2025(01): 58-59+62 . 百度学术
    2. 薛健,孙孟玲,潘美艳. 基于支持向量回归和分位数的雷达K分布海杂波形状参数估计方法. 电子与信息学报. 2024(04): 1399-1407 . 百度学术
    3. 田华飞,魏广芬,简涛,周战,罗沅. 子空间干扰加高斯杂波背景下基于GLRT的斜对称方向检测器设计. 海军航空大学学报. 2024(02): 224-234 . 百度学术
    4. 杨诗曼,王中训,李珊,韩孟孟,刘宁波. 海上目标雷达与AIS航迹时空匹配方法. 海军航空大学学报. 2024(02): 199-204+274 . 百度学术
    5. 田凯祥,李保珠,王中训,刘宁波. 低海况下多姿态海上目标特征分析. 雷达科学与技术. 2024(02): 126-134 . 百度学术
    6. 连静,杨勇,谢晓霞,王雪松. 大掠射角对海雷达导引头实测回波特性分析. 系统工程与电子技术. 2024(05): 1535-1543 . 百度学术
    7. 汪翔,汪育苗,陈星宇,臧传飞,崔国龙. 基于深度学习的多特征融合海面目标检测方法. 雷达学报. 2024(03): 554-564 . 本站查看
    8. 黄胜彬,潘大鹏,陈涛. 基于多维特征融合的海面目标检测. 舰船电子对抗. 2024(03): 84-91 . 百度学术
    9. 田凯祥,于恒力,王中训,刘宁波,韩孟孟. 基于雷达目标特征可分性的一维特征选择方法. 海军航空大学学报. 2024(04): 453-460+500 . 百度学术
    10. 韩喆璇,于恒力,王中训,刘宁波,孙艳丽. 基于相对多普勒峰高特征的OS-CFAR改进方法. 海军航空大学学报. 2024(04): 475-484 . 百度学术
    11. 陈胜垚,胡晨康,程智勇,席峰,刘中. 基于残差单元与注意力门的非对称编解码海杂波抑制网络. 电子学报. 2024(08): 2628-2640 . 百度学术
    12. 关键,姜星宇,刘宁波,丁昊,黄勇. 海杂波背景下的双极化最大特征值目标检测. 系统工程与电子技术. 2024(11): 3715-3725 . 百度学术
    13. 陈铎,范一飞,粟嘉,郭子薰,陶明亮. 基于广义逆高斯纹理结构的目标检测算法. 系统工程与电子技术. 2024(12): 4018-4025 . 百度学术
    14. ZANG Chuanfei,WANG Yumiao,WANG Xiang,XU Congan,CUI Guolong. Sea clutter suppression via cuttable encoder-decoderaugmentation network. Journal of Systems Engineering and Electronics. 2024(06): 1428-1440 . 必应学术
    15. 陈佳音,郭山红,朱海锐,盛卫星,韩玉兵. 基于多特征融合的海面目标智能检测算法. 现代雷达. 2024(12): 24-30 . 百度学术
    16. 张俊玲,董玫,陈伯孝. 基于可调Q因子小波变换的海杂波抑制算法. 系统工程与电子技术. 2023(02): 343-351 . 百度学术
    17. 陈鹏,许震,曹振新,王宗新. 基于图特征学习的海杂波抑制算法. 兵工学报. 2023(02): 534-544 . 百度学术
    18. 黄瀚仪,胡仕友,郭胜龙,李珊君,舒勤. 基于稀疏分解的海面微动目标识别. 系统工程与电子技术. 2023(04): 1016-1023 . 百度学术
    19. 张梦雨,王中训,李飞,刘宁波,董云龙. CNN海况等级分类方法的性能. 烟台大学学报(自然科学与工程版). 2023(02): 196-203 . 百度学术
    20. 关键,刘宁波,王国庆,丁昊,董云龙,黄勇,田凯祥,张梦雨. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集. 雷达学报. 2023(02): 456-469 . 本站查看
    21. 许述文,焦银萍,白晓惠,蒋俊正. 基于频域多通道图特征感知的海面小目标检测. 电子与信息学报. 2023(05): 1567-1574 . 百度学术
    22. 关键,伍僖杰,丁昊,刘宁波,黄勇,曹政,魏嘉彧. 基于三维凹包学习算法的海面小目标检测方法. 电子与信息学报. 2023(05): 1602-1610 . 百度学术
    23. 邓稼麒,李正周,党楚佳,陈文豪,秦天奇. 基于海面场景感知的雷达目标检测方法. 中国电子科学研究院学报. 2023(02): 129-137 . 百度学术
    24. 董云龙,张兆祥,刘宁波,黄勇,丁昊,张梦雨. 雷达回波三特征联合海况分类方法. 雷达科学与技术. 2023(02): 189-198 . 百度学术
    25. 马全鑫,杜晓林,董军,李建波,田团伟. 基于几何方法的结构化协方差矩阵估计. 雷达科学与技术. 2023(02): 143-150 . 百度学术
    26. 刘言,刘宁波,黄勇,王中训. 利用相位特征筛选参考单元的改进CFAR方法. 烟台大学学报(自然科学与工程版). 2023(03): 371-378 . 百度学术
    27. 田凯祥,于晓涵,王中训,刘宁波. 基于实测数据的海杂波与海面小目标特征分析. 海军航空大学学报. 2023(04): 313-322 . 百度学术
    28. 董云龙,张兆祥,刘宁波,黄勇,丁昊. 海杂波多普勒谱Hurst指数特性分析及目标检测. 雷达科学与技术. 2023(04): 355-363+374 . 百度学术
    29. 杨政,程永强,吴昊,黎湘,王宏强. 基于正交投影的子带信息几何雷达弱小目标检测方法. 雷达学报. 2023(04): 776-792 . 本站查看
    30. 杨金龙,成勇,刘佳. 基于多核相关滤波X波段雷达多目标跟踪算法. 信息与控制. 2023(05): 561-573 . 百度学术
    31. 杜延磊,杨晓峰,汪胜,殷君君,杨会章,杨健. 海面雷达散射及其杂波幅度统计特性的空间遍历性数值仿真研究. 系统工程与电子技术. 2023(12): 3806-3818 . 百度学术
    32. 马红光,郭金库,姜勤波,刘志强. 一种基于自适应滤波的海杂波背景下多目标检测方法. 现代信息科技. 2022(04): 72-76 . 百度学术
    33. 董云龙,刘洋,刘宁波,丁昊,关键. 基于雷达方程修正的目标探测距离评估方法. 信号处理. 2022(10): 2102-2113 . 百度学术
    34. 杜延磊,高帆,刘涛,杨健. 基于数值仿真的X波段极化SAR海杂波统计建模与特性分析. 系统工程与电子技术. 2021(10): 2742-2755 . 百度学术
    35. 刘用功,尹勇. 目标船感知技术综述. 广州航海学院学报. 2021(04): 1-4+30 . 百度学术

    其他类型引用(41)

  • 加载中
图(16) / 表(2)
计量
  • 文章访问数: 4302
  • HTML全文浏览量: 1233
  • PDF下载量: 629
  • 被引次数: 76
出版历程
  • 收稿日期:  2020-02-13
  • 修回日期:  2020-04-17
  • 网络出版日期:  2020-04-01

目录

/

返回文章
返回