基于无线信号的人体姿态估计综述

陈彦 张锐 李亚东 宋瑞源 耿瑞旭 龚汉钦 汪斌全 张东恒 胡洋

陈彦, 张锐, 李亚东, 等. 基于无线信号的人体姿态估计综述[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24189
引用本文: 陈彦, 张锐, 李亚东, 等. 基于无线信号的人体姿态估计综述[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24189
CHEN Yan, ZHANG Rui, LI Yadong, et al. An overview of human pose estimation based on wireless signals[J]. Journal of Radars, in press. doi: 10.12000/JR24189
Citation: CHEN Yan, ZHANG Rui, LI Yadong, et al. An overview of human pose estimation based on wireless signals[J]. Journal of Radars, in press. doi: 10.12000/JR24189

基于无线信号的人体姿态估计综述

DOI: 10.12000/JR24189
基金项目: 国家自然科学基金(62172381, 62201542)
详细信息
    作者简介:

    陈 彦,博士,教授,主要研究方向为多模态感知、多媒体信号处理和数字健康

    张 锐,博士生,主要研究方向为多模态感知、视频图像去噪

    李亚东,博士生,主要研究方向为毫米波雷达成像

    宋瑞源,博士生,主要研究方向为多模态机器学习

    耿瑞旭,博士生,主要研究方向为毫米波雷达成像

    龚汉钦,博士生,主要研究方向为无线感知

    汪斌全,博士后,主要研究方向为无线感知

    张东恒,博士,副研究员,主要研究方向为无线感知

    胡 洋,博士,副教授,主要研究方向为计算机视觉、多媒体信号处理和多模态感知

    通讯作者:

    陈彦 eecyan@ustc.edu.cn

  • 责任主编:金添 Corresponding Editor: JIN Tian
  • 中图分类号: TN957.51

An Overview of Human Pose Estimation Based on Wireless Signals

Funds: The National Natural Science Foundation of China (62172381, 62201542)
More Information
  • 摘要: 人体姿态估计在人机交互、动作捕捉和虚拟现实等领域具有广泛的应用前景,一直是人体感知研究的重要方向。然而,基于光学图像的姿态估计方法往往受限于光照条件和隐私问题。因此,利用可在各种光照遮挡下工作,且具有隐私保护性的无线信号进行人体姿态估计获得了更多关注。根据无线信号的工作频率,现有技术可分为高频方法和低频方法,且不同的信号频率对应硬件系统、信号特性、噪声处理和深度学习算法设计等方面均有所不同。本文将以毫米波雷达、穿墙雷达和WiFi信号为代表,回顾其在人体姿态重建研究中的进展和代表性工作,分析各类信号模式的优势与局限,并对潜在研究难点以及未来发展趋势进行了展望。

     

  • 图  1  人体姿态模型

    Figure  1.  Human pose models

    图  2  RPM模型框架图[18]

    Figure  2.  Diagram of the RPM framework[18]

    图  3  基于成像的人体姿态估计方法

    Figure  3.  Radar imaging-based human pose estimation methods

    图  4  混凝土墙体对于信号传播路径的影响

    Figure  4.  The impact of concrete walls on signal propagation paths

    图  5  Person-in-WiFi 3D 模型框架[42]

    Figure  5.  The Framework of Person-in-WiFi 3D[42]

    表  1  基于无线信号的人体姿态估计研究现状总结

    Table  1.   Summary of research status on pose estimation based on wireless signals

    基于频率的分类 设备 雷达特征信息 代表性工作
    基于高频无线信号的
    人体姿态估计
    毫米波雷达
    (30~300 GHz)
    3D Point Cloud mmPose[29]
    Heatmap RPM[18]
    Heatmap RPM 2.0[14]
    Heatmap MobiRFPose[19]
    基于低频无线信号的
    人体姿态估计
    穿墙雷达
    (300~10 GHz)
    Heatmap RF-Pose[34]
    Heatmap RF-Pose3D[36]
    单帧3D成像体素 MIMDSN[37]
    多帧3D成像体素 ST2W-AP[38]
    Heatmap和3D成像体素 Dual-task Net[39]
    多帧雷达回波 RadarFormer[40]
    WiFi
    (2.4~5.825 GHz)
    Channel State Information Person-in-WiFi[41]
    Channel State Information Person-in-WiFi 3D[42]
    Channel State Information DensePose From WiFi[43]
    下载: 导出CSV

    表  2  基于无线信号的人体姿态估计数据集对比

    Table  2.   Summary of dataset on pose estimation based on wireless signals

    数据集 无线设备 真值采集设备 场景数量 行为种类 用户数量 总样本数
    UWB-HA4D-1.0 穿墙雷达 RGB 3 10 11 110280
    HIBER 毫米波雷达 RGB 10 4 10 402380
    RT-Pose 毫米波雷达 RGB
    LiDAR
    40 6 10 72000
    mRI 毫米波雷达 RGB-D
    IMU
    1 12 20 160000
    mmBody 毫米波雷达 RGB 100 7 20 >20万帧
    HuPR 毫米波雷达 RGB 1 3 6 141000
    下载: 导出CSV
  • [1] ZHAO Zhongqiu, ZHENG Peng, XU Shoutao, et al. Object detection with deep learning: A review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212–3232. doi: 10.1109/TNNLS.2018.2876865.
    [2] CHEN Yucheng, TIAN Yingli, and HE Mingyi. Monocular human pose estimation: A survey of deep learning-based methods[J]. Computer Vision and Image Understanding, 2020, 192: 102897. doi: 10.1016/j.cviu.2019.102897.
    [3] MUNEA T L, JEMBRE Y Z, WELDEGEBRIEL H T, et al. The progress of human pose estimation: A survey and taxonomy of models applied in 2D human pose estimation[J]. IEEE Access, 2020, 8: 133330–133348. doi: 10.1109/ACCESS.2020.3010248.
    [4] JIAO Licheng, ZHANG Ruohan, LIU Fang, et al. New generation deep learning for video object detection: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3195–3215. doi: 10.1109/TNNLS.2021.3053249.
    [5] 杨小鹏, 高炜程, 渠晓东. 基于微多普勒角点特征与Non-Local机制的穿墙雷达人体步态异常终止行为辨识技术[J]. 雷达学报, 2024, 13(1): 68–86. doi: 10.12000/JR23181.

    YANG Xiaopeng, GAO Weicheng, and QU Xiaodong. Human anomalous gait termination recognition via through-the-wall radar based on micro-Doppler corner features and Non-Local mechanism[J]. Journal of Radars, 2024, 13(1): 68–86. doi: 10.12000/JR23181.
    [6] 金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2020, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [7] 崔国龙, 余显祥, 魏文强, 等. 认知智能雷达抗干扰技术综述与展望[J]. 雷达学报, 2022, 11(6): 974–1002. doi: 10.12000/JR22191.

    CUI Guolong, YU Xianxiang, WEI Wenqiang, et al. An overview of antijamming methods and future works on cognitive intelligent radar[J]. Journal of Radars, 2022, 11(6): 974–1002. doi: 10.12000/JR22191.
    [8] 夏正欢, 张群英, 叶盛波, 等. 一种便携式伪随机编码超宽带人体感知雷达设计[J]. 雷达学报, 2015, 4(5): 527–537. doi: 10.12000/JR15027.

    XIA Zhenghuan, ZHANG Qunying, YE Shengbo, et al. Design of a handheld pseudo random coded UWB radar for human sensing[J]. Journal of Radars, 2015, 4(5): 527–537. doi: 10.12000/JR15027.
    [9] ZHANG Dongheng, HU Yang, and CHEN Yan. MTrack: Tracking multiperson moving trajectories and vital signs with radio signals[J]. IEEE Internet of Things Journal, 2021, 8(5): 3904–3914. doi: 10.1109/JIOT.2020.3025820.
    [10] LI Yadong, ZHANG Dongheng, CHEN Jinbo, et al. Towards domain-independent and real-time gesture recognition using mmWave signal[J]. IEEE Transactions on Mobile Computing, 2023, 22(12): 7355–7369. doi: 10.1109/TMC.2022.3207570.
    [11] ZHANG Binbin, ZHANG Dongheng, LI Yadong, et al. Unsupervised domain adaptation for RF-based gesture recognition[J]. IEEE Internet of Things Journal, 2023, 10(23): 21026–21038. doi: 10.1109/JIOT.2023.3284496.
    [12] SONG Ruiyuan, ZHANG Dongheng, WU Zhi, et al. RF-URL: Unsupervised representation learning for RF sensing[C]. The 28th Annual International Conference on Mobile Computing and Networking, Sydney, Australia, 2022: 282–295. doi: 10.1145/3495243.3560529.
    [13] GONG Hanqin, ZHANG Dongheng, CHEN Jinbo, et al. Enabling orientation-free Mmwave-based vital sign sensing with multi-domain signal analysis[C]. 2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Korea, Republic of, 2024: 8751–8755. doi: 10.1109/ICASSP48485.2024.10448323.
    [14] XIE Chunyang, ZHANG Dongheng, WU Zhi, et al. RPM 2.0: RF-based pose machines for multi-person 3D pose estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(1): 490–503. doi: 10.1109/TCSVT.2023.3287329.
    [15] YANG Shuai, ZHANG Dongheng, SONG Ruiyuan, et al. Multiple WiFi access points co-localization through joint AoA estimation[J]. IEEE Transactions on Mobile Computing, 2024, 23(2): 1488–1502. doi: 10.1109/TMC.2023.3239377.
    [16] WU Zhi, ZHANG Dongheng, XIE Chunyang, et al. RFMask: A simple baseline for human silhouette segmentation with radio signals[J]. IEEE Transactions on Multimedia, 2023, 25: 4730–4741. doi: 10.1109/TMM.2022.3181455.
    [17] GENG Ruixu, HU Yang, LU Zhi, et al. Passive non-line-of-sight imaging using optimal transport[J]. IEEE Transactions on Image Processing, 2022, 31: 110–124. doi: 10.1109/TIP.2021.3128312.
    [18] XIE Chunyang, ZHANG Dongheng, WU Zhi, et al. RPM: RF-based pose machines[J]. IEEE Transactions on Multimedia, 2024, 26: 637–649. doi: 10.1109/TMM.2023.3268376.
    [19] YU Cong, ZHANG Dongheng, WU Zhi, et al. MobiRFPose: Portable RF-based 3D human pose camera[J]. IEEE Transactions on Multimedia, 2024, 26: 3715–3727. doi: 10.1109/TMM.2023.3314979.
    [20] YU Cong, ZHANG Dongheng, WU Zhi, et al. Fast 3D human pose estimation using RF signals[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10094778.
    [21] MU Kangle, LUAN T H, ZHU Lina, et al. A survey of handy see-through wall technology[J]. IEEE Access, 2020, 8: 82951–82971. doi: 10.1109/ACCESS.2020.2991201.
    [22] SONG Yongkun, JIN Tian, DAI Yongpeng, et al. Through-wall human pose reconstruction via UWB MIMO radar and 3D CNN[J]. Remote Sensing, 2021, 13(2): 241. doi: 10.3390/rs13020241.
    [23] VASISHT D, JAIN A, HSU C Y, et al. Duet: Estimating user position and identity in smart homes using intermittent and incomplete RF-data[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(2): 84. doi: 10.1145/3214287.
    [24] HSU C Y, HRISTOV R, LEE G H, et al. Enabling identification and behavioral sensing in homes using radio reflections[C]. 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland UK, 2019: 548. doi: 10.1145/3290605.3300778.
    [25] FAN Lijie, LI Tianhong, YUAN Yuan, et al. In-home daily-life captioning using radio signals[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 105–123. doi: 10.1007/978-3-030-58536-5_7.
    [26] TIAN Yonglong, LEE G H, HE Hao, et al. RF-based fall monitoring using convolutional neural networks[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 137. doi: 10.1145/3264947.
    [27] AYYALASOMAYAJULA R, ARUN A, WU Chenfeng, et al. Deep learning based wireless localization for indoor navigation[C]. The 26th Annual International Conference on Mobile Computing and Networking, London, United Kingdom, 2020: 17. doi: 10.1145/3372224.3380894.
    [28] CAO Zhongping, DING Wen, CHEN Rihui, et al. A joint global–local network for human pose estimation with millimeter wave radar[J]. IEEE Internet of Things Journal, 2023, 10(1): 434–446. doi: 10.1109/JIOT.2022.3201005.
    [29] SENGUPTA A, JIN Feng, ZHANG Renyuan, et al. mm-Pose: Real-time human skeletal posture estimation using mmWave radars and CNNs[J]. IEEE Sensors Journal, 2020, 20(17): 10032–10044. doi: 10.1109/JSEN.2020.2991741.
    [30] ADIB F, HSU C Y, MAO Hongzi, et al. Capturing the human figure through a wall[J]. ACM Transactions on Graphics, 2015, 34(6): 219. doi: 10.1145/2816795.2818072.
    [31] AHMAD F, ZHANG Yimin, and AMIN M G. Three-dimensional wideband beamforming for imaging through a single wall[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 176–179. doi: 10.1109/LGRS.2008.915742.
    [32] KONG Lingjiang, CUI Guolong, YANG Xiaobo, et al. Three-dimensional human imaging for through-the-wall radar[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–4. doi: 10.1109/RADAR.2009.4976932.
    [33] HOLL P M and REINHARD F. Holography of Wi-Fi radiation[J]. Physical Review Letters, 2017, 118(18): 183901. doi: 10.1103/PhysRevLett.118.183901.
    [34] ZHAO Mingming, LI Tianhong, ABU ALSHEIKH M, et al. Through-wall human pose estimation using radio signals[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7356–7365. doi: 10.1109/CVPR.2018.00768.
    [35] JIANG Wenjun, XUE Hongfei, MIAO Chenglin, et al. Towards 3D human pose construction using WiFi[C]. The 26th Annual International Conference on Mobile Computing and Networking, London, United Kingdom, 2020: 23. doi: 10.1145/3372224.3380900.
    [36] ZHAO Mingmin, TIAN Yonglong, ZHAO Hang, et al. RF-based 3D skeletons[C]. 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 2018: 267–281. doi: 10.1145/3230543.3230579.
    [37] ZHENG Zhijie, PAN Jun, ZHANG Diankun, et al. Through-wall human pose estimation by mutual information maximizing deeply supervised nets[J]. IEEE Internet of Things Journal, 2024, 11(2): 3190–3205. doi: 10.1109/JIOT.2023.3294955.
    [38] 张锐, 龚汉钦, 宋瑞源, 等. 基于4D成像雷达的隔墙人体姿态重建与行为识别研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24132.

    ZHANG Rui, GONG Hanqin, SONG Ruiyuan, et al. Through-wall human pose reconstruction and action recognition using four-dimensional imaging radar[J]. Journal of Radars, in press. doi: 10.12000/JR24132.
    [39] SONG Yongkun, DAI Yongpeng, JIN Tian, et al. Dual-task human activity sensing for pose reconstruction and action recognition using 4-D imaging radar[J]. IEEE Sensors Journal, 2023, 23(19): 23927–23940. doi: 10.1109/JSEN.2023.3308788.
    [40] ZHENG Zhijie, ZHANG Diankun, LIANG Xiao, et al. RadarFormer: End-to-end human perception with through-wall radar and transformers[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 35(10): 4319–4332. doi: 10.1109/TNNLS.2023.3314031.
    [41] WANG Fei, ZHOU Sanping, PANEV S, et al. Person-in-WiFi: Fine-grained person perception using WiFi[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 5452–5461. doi: 10.1109/ICCV.2019.00555.
    [42] YAN Kangwei, WANG Fei, QIAN Bo, et al. Person-in-WiFi 3D: End-to-end multi-person 3D pose estimation with Wi-Fi[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 969–978. doi: 10.1109/CVPR52733.2024.00098.
    [43] GENG Jiaqi, HUANG Dong, and DE LA TORRE F. DensePose from WiFi[OL]. https://arxiv.org/abs/2301.00250. 2022.
    [44] CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7291–7299. doi: 10.1109/CVPR.2017.143.
    [45] JOHNSON S and EVERINGHAM M. Clustered pose and nonlinear appearance models for human pose estimation[C]. 2010 British Machine Vision Conference, Aberystwyth, UK, 2010: 1–11.
    [46] CHEN Xianjie and YUILLE A. Parsing occluded people by flexible compositions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3945–3954. doi: 10.1109/CVPR.2015.7299020.
    [47] LI Wenbo, WANG Zhicheng, YIN Binyi, et al. Rethinking on multi-stage networks for human pose estimation[OL]. https://arxiv.org/abs/1901.00148. 2019.
    [48] BOULIC R, THALMANN N M, and THALMANN D. A global human walking model with real-time kinematic personification[J]. The Visual Computer, 1990, 6(6): 344–358. doi: 10.1007/BF01901021.
    [49] BOULIC R, REZZONICO S, and THALMANN D. Multi-finger manipulation of virtual objects[C]. ACM Symposium on Virtual Reality Software and Technology, Hong Kong, China, 1996: 67–74. doi: 10.1145/3304181.3304195.
    [50] JU S X, BLACK M J, and YACOOB Y. Cardboard people: A parameterized model of articulated image motion[C]. The 2nd International Conference on Automatic Face and Gesture Recognition, Killington, USA, 1996: 38–44. doi: 10.1109/AFGR.1996.557241.
    [51] JIANG Hao. Finding human poses in videos using concurrent matching and segmentation[C]. The 10th Asian Conference on Computer Vision, Queenstown, New Zealand, 2011: 228–243. doi: 10.1007/978-3-642-19315-6_18.
    [52] COOTES T F, TAYLOR C J, COOPER D H, et al. Active shape models-their training and application[J]. Computer Vision and Image Understanding, 1995, 61(1): 38–59. doi: 10.1006/cviu.1995.1004.
    [53] FREIFELD O, WEISS A, ZUFFI S, et al. Contour people: A parameterized model of 2D articulated human shape[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 639–646. doi: 10.1109/CVPR.2010.5540154.
    [54] URTASUN R and FUA P. 3D human body tracking using deterministic temporal motion models[C]. The 8th European Conference on Computer Vision, Prague, Czech Republic, 2004: 92–106. doi: 10.1007/978-3-540-24672-5_8.
    [55] LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: A skinned multi-person linear model[J]. Seminal Graphics Papers: Pushing the Boundaries, 2023, 2: 88. doi: 10.1145/3596711.3596800.
    [56] SAITO Shunsuke, HUANG Zeng, NATSUME Ryota, et al. PIFu: Pixel-aligned implicit function for high-resolution clothed human digitization[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 2304–2314. doi: 10.1109/ICCV.2019.00239.
    [57] PONS-MOLL G, ROMERO J, MAHMOOD N, et al. Dyna: A model of dynamic human shape in motion[J]. ACM Transactions on Graphics, 2015, 34(4): 120. doi: 10.1145/2766993.
    [58] ZUFFI S and BLACK M J. The stitched puppet: A graphical model of 3D human shape and pose[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3537–3546. doi: 10.1109/CVPR.2015.7298976.
    [59] JOO H, SIMON T, and SHEIKH Y. Total capture: A 3D deformation model for tracking faces, hands, and bodies[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8320–8329. doi: 10.1109/CVPR.2018.00868.
    [60] XU Hongyi, BAZAVAN E G, ZANFIR A, et al. GHUM & GHUML: Generative 3D human shape and articulated pose models[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6184–6193. doi: 10.1109/CVPR42600.2020.00622.
    [61] CHEN V C, LI Fayin, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402.
    [62] 李柯蒙, 戴永鹏, 宋勇平, 等. 单通道超宽带雷达人体姿态增量估计技术[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24109.

    LI Kemeng, DAI Yongpeng, SONG Yongping, et al. Single-channel ultrawideband radar human pose-incremental estimation technology[J]. Journal of Radars, in press. doi: 10.12000/JR24109.
    [63] 金添, 宋永坤, 戴永鹏, 等. UWB-HA4D-1.0: 超宽带雷达人体动作四维成像数据集[J]. 雷达学报, 2022, 11(1): 27–39. doi: 10.12000/JR22008.

    JIN Tian, SONG Yongkun, DAI Yongpeng, et al. UWB-HA4D-1.0: An ultra-wideband radar human activity 4D imaging dataset[J]. Journal of Radars, 2022, 11(1): 27–39. doi: 10.12000/JR22008.
    [64] HO Y H, CHENG J H, KUAN Shengyao, et al. RT-Pose: A 4D radar tensor-based 3D human pose estimation and localization benchmark[OL]. https://arxiv.org/abs/2407.13930. 2024.
    [65] AN Sizhe, LI Yin, and OGRAS U. mRI: Multi-modal 3D human pose estimation dataset using mmwave, RGB-D, and inertial sensors[C]. 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1988.
    [66] CHEN Anjun, WANG Xiangyu, ZHU Shaohao, et al. mmBody benchmark: 3D body reconstruction dataset and analysis for millimeter wave radar[C]. 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 3501–3510. doi: 10.1145/3503161.3548262.
    [67] LEE S P, KINI N P, PENG W H, et al. HuPR: A benchmark for human pose estimation using millimeter wave radar[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 5715–5724. doi: 10.1109/WACV56688.2023.00567.
    [68] GADRE A, VASISHT D, RAGHUVANSHI N, et al. MiLTOn: Sensing product integrity without opening the box using non-invasive acoustic vibrometry[C]. 21st ACM/IEEE International Conference on Information Processing in Sensor Networks, Milano, Italy, 2022: 390–402. doi: 10.1109/IPSN54338.2022.00038.
    [69] LI Yang, LIU Yutong, WANG Yanping, et al. The millimeter-wave radar SLAM assisted by the RCS feature of the target and IMU[J]. Sensors, 2020, 20(18): 5421. doi: 10.3390/s20185421.
    [70] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41–75. doi: 10.1023/A:1007379606734.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  35
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-16
  • 修回日期:  2024-11-07

目录

    /

    返回文章
    返回