视场非完全重叠的分布式雷达多目标跟踪方法

达凯 杨烨 朱永锋 付强

达凯, 杨烨, 朱永锋, 等. 视场非完全重叠的分布式雷达多目标跟踪方法[J]. 雷达学报, 2022, 11(3): 459–468. doi: 10.12000/JR21183
引用本文: 达凯, 杨烨, 朱永锋, 等. 视场非完全重叠的分布式雷达多目标跟踪方法[J]. 雷达学报, 2022, 11(3): 459–468. doi: 10.12000/JR21183
DA Kai, YANG Ye, ZHU Yongfeng, et al. Multitarget tracking using distributed radar with partially overlapping fields of views[J]. Journal of Radars, 2022, 11(3): 459–468. doi: 10.12000/JR21183
Citation: DA Kai, YANG Ye, ZHU Yongfeng, et al. Multitarget tracking using distributed radar with partially overlapping fields of views[J]. Journal of Radars, 2022, 11(3): 459–468. doi: 10.12000/JR21183

视场非完全重叠的分布式雷达多目标跟踪方法

DOI: 10.12000/JR21183
基金项目: 国家部委基金
详细信息
    作者简介:

    达 凯(1991–),男,湖南人,博士,国防科技大学电子科学学院博士后。主要研究方向为雷达信号处理、多传感器多目标跟踪、信息融合

    杨 烨(1995–),男,江苏人,国防科技大学电子科学学院在读博士。主要研究方向为雷达信号处理、协同抗干扰技术

    朱永锋(1979–),男,江苏人,博士,国防科技大学电子科学学院副研究员。主要研究方向为雷达信号处理与目标识别、多源信息融合

    付 强(1962–),男,湖南人,博士,国防科技大学电子科学学院教授。主要研究方向为雷达信号处理与目标识别

    通讯作者:

    朱永锋 zoyofo@163.com

  • 责任主编:李天成 Corresponding Editor: LI Tiancheng
  • 中图分类号: TN957

Multitarget Tracking Using Distributed Radar with Partially Overlapping Fields of Views

Funds: The National Ministries Foundation
More Information
  • 摘要: 在探测能力、波形设计及天线指向等因素制约下,分布式雷达视场并非完全重合,由此造成的观测信息差异给后续信息融合带来了巨大挑战。该文基于高斯混合实现的集势概率假设密度(CPHD)滤波器,提出了一种视场部分重叠下的分布式雷达多目标跟踪方法。首先,利用多目标密度乘积切分出概率假设密度(PHD)中表征共同观测信息的部分;之后,标准的分布式融合(算术平均或几何平均融合)方法作用于切分出的共同观测目标信息以提升跟踪性能,补偿融合则作用于雷达单独观测目标信息以扩展视场范围。该文方法无须视场先验信息,能够适应雷达视场未知时的分布式融合多目标跟踪场景。仿真实验验证了所提出方法在未知、时变雷达视场下跟踪多目标的性能,表明了该文方法比基于高斯混合的聚类方法性能更好。

     

  • 图  1  两雷达的重叠视场

    Figure  1.  The overlapping field of view of two radars

    图  2  不同时刻的雷达视场示意图(s1—s3为雷达平台,t1—t4为目标,k表示不同时刻,坐标轴单位为km)

    Figure  2.  The illustration of the sensor field of views in different time(s1—s3 are radar platforms, t1—t4 are targets, k represents time index, and the unit of coordinate is km)

    图  3  目标数目估计及OSPA误差

    Figure  3.  Estimated number of targets and OSPA error

    表  1  部分重叠视场下分布式雷达多目标跟踪算法

    Table  1.   Distributed multitarget tracking using radars with partially overlapping FoVs

     算法1:部分重叠视场下分布式雷达多目标跟踪算法
     (1) 雷达ij执行GM-CPHD滤波器分别得到势分布${p_i}(n)$,
       ${p_j}(n)$和PHD ${D_i}({\boldsymbol{x}})$, ${D_j}({\boldsymbol{x}})$;
     (2) 计算多目标密度乘积(式(21));
     (3) 修剪高斯混合形式乘积,得到
       ${D_{ij}}({\boldsymbol{x}}) = \left( {w_{ij}^{(l)},m_{ij}^{(l)},P_{ij}^{(l)}} \right)_{l = 1}^{{M_{ij}}}$ ;
     (4) 计算形成${D_{ij}}({\boldsymbol{x}})$所对应的${D_i}({\boldsymbol{x}})$和${D_j}({\boldsymbol{x}})$中的分量,分别为
       ${D_{i,I}}({\boldsymbol{x}})$和${D_{j,I}}({\boldsymbol{x}})$;
     (5) 对${D_{i,I}}({\boldsymbol{x}})$及${D_{j,I}}({\boldsymbol{x}})$的高斯权重进行如式(27)的处理;
     (6) 利用多伯努利近似计算切分势分布${p_{i,I}}(n)$及${p_{j,I}}(n)$(式(29));
     (7) 计算切分PHD ${D_{i,O}}({\boldsymbol{x}})$和${D_{j,O}}({\boldsymbol{x}})$(式(25),式(26));
     (8) 利用卷积性质计算剩余势分布${p_{i,O}}(n)$和${p_{j,O}}(n)$(式(31));
     (9) 计算合并势分布$p(n)$及PHD $D({\boldsymbol{x}})$(式(32),式(33))。
    下载: 导出CSV
  • [1] HE Shaoming, SHIN H S, XU Shuoyuan, et al. Distributed estimation over a low-cost sensor network: A review of state-of-the-art[J]. Information Fusion, 2020, 54: 21–43. doi: 10.1016/j.inffus.2019.06.026
    [2] LIGGINS II M, HALL D, and LLINAS J. Handbook of Multisensor Data Fusion: Theory and Practice[M]. Boca Raton: CRC Press, 2017.
    [3] CHONG C Y, CHANG Kuochu, and MORI S. A review of forty years of distributed estimation[C]. 21st International Conference on Information Fusion, Cambridge, UK, 2018: 1–8.
    [4] CHEN X, THARMARASA R, and KIRUBARAJAN T. Multitarget Multisensor Tracking[M]. Academic Press Library in Signal Processing. Amsterdam: Elsevier, 2014: 759–812.
    [5] JAVADI S H and FARINA A. Radar networks: A review of features and challenges[J]. Information Fusion, 2020, 61: 48–55. doi: 10.1016/j.inffus.2020.03.005
    [6] MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523–1543. doi: 10.1109/TAES.2007.4441756
    [7] MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Norwood, US: Artech House, 2007.
    [8] MAHLER R P S. Advances in Statistical Multisource-Multitarget Information Fusion[M]. Norwood, US: Artech House, 2014.
    [9] 杨威, 付耀文, 龙建乾, 等. 基于有限集统计学理论的目标跟踪技术研究综述[J]. 电子学报, 2012, 40(7): 1440–1448. doi: 10.3969/j.issn.0372-2112.2012.07.025

    YANG Wei, FU Yaowen, LONG Jianqian, et al. The FISST-based target tracking techniques: A survey[J]. Acta Electronica Sinica, 2012, 40(7): 1440–1448. doi: 10.3969/j.issn.0372-2112.2012.07.025
    [10] 李天成, 范红旗, 孙树栋. 粒子滤波理论、方法及其在多目标跟踪中的应用[J]. 自动化学报, 2015, 41(12): 1981–2002. doi: 10.16383/j.aas.2015.c150426

    LI Tiancheng, FAN Hongqi, and SUN Shudong. Particle filtering: Theory, approach, and application for multitarget tracking[J]. Acta Automatica Sinica, 2015, 41(12): 1981–2002. doi: 10.16383/j.aas.2015.c150426
    [11] WU Weihua, SUN Hemin, HUANG Zhiliang, et al. Multi-GMTI fusion for Doppler blind zone suppression using PHD fusion[J]. Signal Processing, 2021, 183: 108024. doi: 10.1016/j.sigpro.2021.108024
    [12] WANG Xiaoying, GOSTAR A K, RATHNAYAKE T, et al. Centralized multiple-view sensor fusion using labeled multi-Bernoulli filters[J]. Signal Processing, 2018, 150: 75–84.
    [13] MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    [14] VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822
    [15] DA Kai, LI Tiancheng, ZHU Yongfeng, et al. Recent advances in multisensor multitarget tracking using random finite set[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(1): 5–24. doi: 10.1631/FITEE.2000266
    [16] BATTISTELLI G, CHISCI L, and LAURENZI A. Random set approach to distributed multivehicle SLAM[J]. IFAC-PapersOnLine, 2017, 50(1): 2457–2464. doi: 10.1016/j.ifacol.2017.08.410
    [17] LI Suqi, BATTISTELLI G, CHISCI L, et al. Multi-sensor multi-object tracking with different fields-of-view using the LMB filter[C]. 21st International Conference on Information Fusion, Cambridge, UK, 2018: 1201–1208.
    [18] GAN J, VASIC M, and MARTINOLI A. Cooperative multiple dynamic object tracking on moving vehicles based on sequential Monte Carlo probability hypothesis density filter[C]. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 2016: 2163–2170.
    [19] LI Tiancheng, ELVIRA V, FAN Hongqi, et al. Local-diffusion-based distributed SMC-PHD filtering using sensors with limited sensing range[J]. IEEE Sensors Journal, 2019, 19(4): 1580–1589. doi: 10.1109/JSEN.2018.2882084
    [20] DA Kai, LI Tiancheng, ZHU Yongfeng, et al. Gaussian mixture particle jump-Markov-CPHD fusion for multitarget tracking using sensors with limited views[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 605–616. doi: 10.1109/TSIPN.2020.3016478
    [21] VASIC M, MANSOLINO D, and MARTINOLI A. A system implementation and evaluation of a cooperative fusion and tracking algorithm based on a Gaussian Mixture PHD filter[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016: 4172–4179.
    [22] LI Guchong, BATTISTELLI G, CHISCI L, et al. Distributed multi-view multi-target tracking based on CPHD filtering[J]. Signal Processing, 2021, 188: 108210. doi: 10.1016/j.sigpro.2021.108210
    [23] 吴孙勇, 王力, 李天成, 等. 基于分布式有限感知网络的多伯努利目标跟踪[J]. 自动化学报, 2022, 48(5): 1370–1384. doi: 10.16383/j.aas.c200481.

    WU Sunyong, WANG Li, LI Tiancheng, et al. Multi-Bernoulli target tracking based on distributed limited sensing network[J]. Acta Automatica Sinica, 2022, 48(5): 1370–1384. doi: 10.16383/j.aas.c200481.
    [24] LI Guchong, BATTISTELLI G, YI Wei, et al. Distributed multi-sensor multi-view fusion based on generalized covariance intersection[J]. Signal Processing, 2020, 166: 107246. doi: 10.1016/j.sigpro.2019.107246
    [25] VAN NGUYEN H, REZATOFIGHI H, VO B N, et al. Distributed multi-object tracking under limited field of view sensors[J]. IEEE Transactions on Signal Processing, 2021, 69: 5329–5344. doi: 10.1109/TSP.2021.3103125
    [26] YI Wei, LI Guchong, and BATTISTELLI G. Distributed multi-sensor fusion of PHD filters with different sensor fields of view[J]. IEEE Transactions on Signal Processing, 2020, 68: 5204–5218. doi: 10.1109/TSP.2020.3021834
    [27] VO B T, VO B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241
    [28] GAO Lin, BATTISTELLI G, and CHISCI L. Multiobject fusion with minimum information loss[J]. IEEE Signal Processing Letters, 2020, 27: 201–205. doi: 10.1109/LSP.2019.2963817
    [29] 胡广书. 数字信号处理: 理论、算法与实现[M]. 2版. 北京: 清华大学出版社, 2003.

    HU Guangshu. Digital Signal Processing: Theory, Algorithm and Implementation[M]. Second edition. Beijing, Tsinghua University Press, 2003.
    [30] RISTIC B, CLARK D, VO B N, et al. Adaptive target birth intensity for PHD and CPHD filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656–1668. doi: 10.1109/TAES.2012.6178085
    [31] HOUSSINEAU J and LANEUVILLE D. PHD filter with diffuse spatial prior on the birth process with applications to GM-PHD filter[C]. 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8.
    [32] SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/TSP.2008.920469
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  1647
  • HTML全文浏览量:  969
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-01-21
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回