基于激光雷达探测的飞机尾流特征参数反演系统

沈淳 高航 王雪松 李健兵

沈淳, 高航, 王雪松, 等. 基于激光雷达探测的飞机尾流特征参数反演系统[J]. 雷达学报, 2020, 9(6): 1032–1044. doi: 10.12000/JR20046
引用本文: 沈淳, 高航, 王雪松, 等. 基于激光雷达探测的飞机尾流特征参数反演系统[J]. 雷达学报, 2020, 9(6): 1032–1044. doi: 10.12000/JR20046
SHEN Chun, GAO Hang, WANG Xuesong, et al. Aircraft wake vortex parameter-retrieval system based on Lidar[J]. Journal of Radars, 2020, 9(6): 1032–1044. doi: 10.12000/JR20046
Citation: SHEN Chun, GAO Hang, WANG Xuesong, et al. Aircraft wake vortex parameter-retrieval system based on Lidar[J]. Journal of Radars, 2020, 9(6): 1032–1044. doi: 10.12000/JR20046

基于激光雷达探测的飞机尾流特征参数反演系统

DOI: 10.12000/JR20046
基金项目: 国家自然科学基金(61490649, 61771479, 61625108),湖南省杰出青年基金(2018JJ1030)
详细信息
    作者简介:

    沈 淳(1985–),男,福建漳州人,博士生,工程师,研究方向为空间信息获取与处理

    高 航(1995–),女,四川雅安人,博士生,主要研究方向为雷达信号处理

    王雪松(1972–),男,内蒙古人,博士,国防科技大学电子科学学院教授,主要研究方向为极化信息处理、新体制雷达技术、电子对抗

    李健兵(1979–),男,湖南邵东人,博士,国防科技大学电子科学学院教授,主要研究方向为新体制雷达、雷达信号处理

    通讯作者:

    沈淳 chunshen@nudt.edu.cn

    李健兵 jianbingli@nudt.edu.cn

  • 责任主编:夏海云 Corresponding Editor: XIA Haiyun
  • 中图分类号: TN955+.1

Aircraft Wake Vortex Parameter-retrieval System Based on Lidar

Funds: The National Natural Science Foundation of China (61490649, 61771479, 61625108), Hunan Natural Science Foundation for Distinguished Young Scholars (2018JJ1030)
More Information
  • 摘要: 飞机尾流是飞机飞行时在其后方产生的一对反向旋转的强烈湍流,对后续飞机飞行安全具有重大影响,其探测已成为制约机场容量增长和影响空中交通安全管理的瓶颈,亟需发展飞机尾流雷达探测和监视的技术与系统。该文构建了基于激光雷达探测的飞机尾流特征参数反演系统,可基于实测数据反演得到尾流涡心位置和速度环量等特征参数。同时构建了尾流动力学、散射特性与雷达回波仿真模块,可实现参数反演算法的性能评估。该系统的参数反演性能优良,运行稳定,可为机场安全管控提供有效技术手段,为飞机尾流的短时行为预测、危害评估和动态间隔标准制定等提供基础支撑。

     

  • 图  1  飞机尾流特征参数反演系统流程图

    Figure  1.  Flow chart of aircraft wake vortex parameter-retrieval system

    图  2  飞机尾流速度矢量示意图

    Figure  2.  Velocity components of aircraft wake vortices

    图  3  激光雷达探测飞机尾流示意图

    Figure  3.  Geometry setup of wake vortex Lidar detection

    图  4  激光雷达探测多普勒速度RHI分布示意图

    Figure  4.  RHI distribution of Doppler velocity by Lidar

    图  5  飞机尾流左右涡心回波数据示意图

    Figure  5.  Velocity distribution of the left and right wake vortices

    图  6  Gabor滤波后幅度二维分布图

    Figure  6.  Two-dimensional amplitude distribution after Gabor filter

    图  7  多普勒速度极差随径向距离的变化

    Figure  7.  Variation of Doppler velocity range along radial distance

    图  8  定位漩涡涡心仰角的说明图

    Figure  8.  Determination of wake vortex cores’ elevation angles

    图  9  尾流环量积分示意图

    Figure  9.  Path integration of wake vortex circulation

    图  10  左涡心径向距离上的两个探测单元速度分解

    Figure  10.  Velocity analysis of two detection units above and below the left vortex core

    图  11  飞机尾流特征参数反演系统界面

    Figure  11.  Interface of wake vortex parameter-retrieval system

    图  12  飞机尾流仿真参数设置界面

    Figure  12.  Interface of wake vortex simulation parameter setup

    图  13  飞机尾流多普勒速度和涡心轨迹的时间演化

    Figure  13.  Evolution of wake vortex Doppler velocity and vortex-core trajectory

    图  14  飞机尾流涡心定位结果

    Figure  14.  Results of wake vortex core location

    图  15  飞机尾流速度环量的理论与估计值对比

    Figure  15.  Comparison of wake vortex theory and estimated circulation

    图  16  香港机场飞机尾流激光雷达探测示意图

    Figure  16.  Lidar detection scene at Hongkong international airport

    图  17  飞机尾流速度环量估计方法设置

    Figure  17.  Interface of wake vortex circulation estimation algorithm

    图  18  飞机尾流实测数据涡心位置演化

    Figure  18.  Retrieval results of wake vortex core trajectory from detected data

    图  19  飞机尾流实测数据速度环量估计

    Figure  19.  Retrieval results of wake vortex circulations from detected data

    表  1  激光雷达仿真参数

    Table  1.   Simulation parameters of the Lidar

    主要参数量值
    雷达波长(μm)1.54
    脉冲宽度(ns)170
    采样率(MHz)50
    脉冲积累数1500
    信号噪声比(dB)–5
    FFT点数1024
    距离门宽度(m)21
    下载: 导出CSV

    表  2  香港国际机场探测激光雷达参数

    Table  2.   Parameters of Lidar used to detect at Hongkong international airport

    主要参数量值
    雷达波长(μm)1.54
    脉冲宽度(ns)200
    脉冲重复频率(kHz)20
    探测距离(m)[50, 6000]
    俯仰角(°)0.83~10.77
    距离门宽度(m)25
    下载: 导出CSV
  • [1] ROSSOW V J. Lift-generated vortex wakes of subsonic transport aircraft[J]. Progress in Aerospace Sciences, 1999, 35(6): 507–660. doi: 10.1016/S0376-0421(99)00006-8
    [2] VEILLETTE P R. Data show that U. S. wake-turbulence accidents are most frequent at low altitude and during approach and landing[J]. Flight Safety Digest, 2002, 21(3/4): 147.
    [3] ANDREWS W H, LARSON R R, and ROBINSON G H. Aircraft response to the wing trailing vortices generated by large jet transports[R]. SEE N71-30756 18-02, 1971: 115–126.
    [4] ASTHEIMER T, HILTON D, BALDONI C, et al. SESAR master plan[R]. DLM-0710-001-02-00, 2008.
    [5] Federal Aviation Administration. NextGen implementation plan 2016[R]. FAA, 2016.
    [6] HOLZÄPFEL F, GERZ T, KÖPP F, et al. Strategies for circulation evaluation of aircraft wake vortices measured by lidar[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(8): 1183–1195. doi: 10.1175/1520-0426(2003)020<1183:SFCEOA>2.0.CO;2
    [7] SMALIKHO I N, BANAKH V A, HOLZÄPFEL F, et al. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar[J]. Optics Express, 2015, 23(19): A1194–A1207. doi: 10.1364/OE.23.0A1194
    [8] THOBOIS L P, KRISHNAMURTY R, CARIOU J P, et al. Wind and EDR measurements with scanning Doppler LIDARs for preparing future weather dependent separation concepts[C]. The 7th AIAA Atmospheric and Space Environments Conference, Dallas, USA, 2015: 1–13. doi: 10.2514/6.2015-3317.
    [9] YOSHIKAWA E and MATAYOSHI N. Aircraft wake vortex retrieval method on lidar lateral range–Height Indicator Observation[J]. AIAA Journal, 2017, 55(7): 2269–2278. doi: 10.2514/1.J055224
    [10] LI Jianbing, WANG Xuesong, and WANG Tao. Modeling the dielectric constant distribution of wake vortices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 820–831. doi: 10.1109/TAES.2011.5751228
    [11] LIU Zhongxun, JEANNIN N, VINCENT F, et al. Modeling the radar signature of raindrops in aircraft wake vortices[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3): 470–484. doi: 10.1175/JTECH-D-11-00220.1
    [12] LI J, WANG X, and WANG T. On the validity of Born approximation[J]. Progress in Electromagnetics Research, 2010, 107: 219–237. doi: 10.2528/PIER10070504
    [13] LI Jianbing, WANG Xuesong, and WANG Tao. A universal solution to one-dimensional oscillatory integrals[J]. Science in China Series F: Information Sciences, 2008, 51(10): 1614–1622. doi: 10.1007/s11432-008-0121-2
    [14] LI Jianbing, WANG Xuesong, XIAO Shunping, et al. A rapid solution of a kind of 1D fredholm oscillatory integral equation[J]. Journal of Computational and Applied Mathematics, 2012, 236(10): 2696–2705. doi: 10.1016/j.cam.2012.01.007
    [15] LI Jianbing, WANG Xuesong, WANG Tao, et al. On an improved-Levin oscillatory quadrature method[J]. Journal of Mathematical Analysis and Applications, 2011, 380(2): 467–474. doi: 10.1016/j.jmaa.2011.03.055
    [16] Li Jianbing, WANG Xuesong, WANG Tao, et al. Delaminating quadrature method for multi-dimensional highly oscillatory integrals[J]. Applied Mathematics and Computation, 2009, 209(2): 327–338. doi: 10.1016/j.amc.2008.12.061
    [17] LI Jianbing, WANG Xuesong, WANG Tao, et al. An improved levin quadrature method for highly oscillatory integrals[J]. Applied Numerical Mathematics, 2010, 60(8): 833–842. doi: 10.1016/j.apnum.2010.04.009
    [18] 李健兵, 王雪松. 飞机尾流雷达特征信号研究[M]. 长沙: 国防科技大学出版社, 2015.

    LI Jianbing and WANG Xuesong. Study on the Radar Characteristics of Aircraft Wake Vortices[M]. Changsha: National University of Defense Technology Press, 2015.
    [19] LI Jianbing, WANG Xuesong, WANG Tao, et al. High range resolution profile of simulated aircraft wake vortices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 116–129. doi: 10.1109/TAES.2012.6129624
    [20] WANG Xuesong, LI Jianbing, QU Longhai, et al. Temporal evolution of the RCS of aircraft wake vortices[J]. Aerospace Science and Technology, 2013, 24(1): 204–208. doi: 10.1016/j.ast.2011.11.008
    [21] LI Jianbing, WANG Tao, LIU Zhongxun, et al. Circulation retrieval of wake vortex in fog with a side-looking scanning Radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2242–2254. doi: 10.1109/TAES.2016.150635
    [22] JIAO Yuntao. Windshear at low altitude and flight safety[J]. Civil Aviation Economics and technology, 1994, (11): 13–14.
    [23] WILSON D K, OSTASHEV V E, GOEDECKE G H, et al. Quasi-Wavelet Calculations of Sound Scattering Behind Barriers[J]. Applied Acoustics, 2004, 65(6): 605–627. doi: 10.1016/j.apacoust.2003.11.009
    [24] 张宏昇. 大气湍流基础[M]. 北京: 北京大学出版社, 2014: 161–165.

    ZHANG Hongsheng. Atmospheric Turbulence Foundation[M]. Beijing: Peking University Press, 2014: 161–165.
    [25] GERZ T, HOLZÄPFEL F, and DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181–208. doi: 10.1016/S0376-0421(02)00004-0
    [26] 屈龙海. 晴空和湿性大气中飞机尾流雷达散射特性的研究[D]. [博士论文], 国防科学技术大学, 2015: 29–31.

    QU Longhai. Study on the radar scattering characteristics of aircraft wake vortex in clear air and moist air[D]. [Ph. D. dissertation], National University of Defense Technology, 2015: 29–31.
    [27] AHMAD N N, PROCTOR F H, LIMON DUPARCMEUR F M, et al. Review of idealized aircraft wake vortex models[C]. The 52nd Aerospace Sciences Meeting, National Harbor, USA, 2014.
    [28] HOLZÄPFEL F. Sensitivity analysis of the effects of aircraft and environmental parameters on aircraft wake vortex trajectories and lifetimes[C]. The 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Dallas/Ft. Worth Region, USA, 2013: 7–10.
    [29] HOLZÄPFEL F. Probabilistic two-phase wake vortex decay and transport model[J]. Journal of Aircraft, 2003, 40(2): 323–331. doi: 10.2514/2.3096
    [30] 李金梁. 箔条干扰的特性与雷达抗箔条技术研究[D]. [博士论文], 国防科学技术大学, 2010: 57–58.

    LI Jingliang. Study on characteristics of chaff jamming and anti - chaff technology for radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2010: 57–58.
    [31] ZRNIC D S. Estimation of spectral moments for weather echoes[J]. IEEE Transactions on Geoscience Electronics, 1979, 17(4): 113–128. doi: 10.1109/TGE.1979.294638
    [32] DAUGMAN J G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J]. Journal of the Optical Society of America A, 1985, 2(7): 1160–1169. doi: 10.1364/JOSAA.2.001160
    [33] LI Jianbing, SHEN Chun, GAO Hang, et al. Path Integration (PI) method for the parameter-retrieval of aircraft wake vortex by Lidar[J]. Optics Express, 2020, 28(3): 4286–4306. doi: 10.1364/OE.382968
    [34] GAO Hang, LI Jianbing, CHAN P W, et al. Parameter-retrieval of dry-air wake vortices with a scanning Doppler lidar[J]. Optics Express, 2018, 26(13): 16377–16392. doi: 10.1364/OE.26.016377
    [35] GAO Hang, LI Jianbing, CHAN P W, et al. Parameter retrieval of aircraft wake vortex based on its max-min distribution of Doppler velocities measured by a lidar[J]. The Journal of Engineering, 2019, 2019(20): 6852–6855. doi: 10.1049/joe.2019.0539
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  3211
  • HTML全文浏览量:  1129
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 修回日期:  2020-06-03
  • 网络出版日期:  2020-12-28

目录

    /

    返回文章
    返回