Boundary Analysis and Fast Imaging Arc Selection Experimental Demonstration for Bi-ISAR Imaging with Bistatic Angle Derivative Constraint
-
摘要: 双基地ISAR(Bi-ISAR)成像技术在空天目标探测和识别等领域具有广阔的应用前景,然而由于双基构型的复杂多变,导致不同观测构型下的成像性能存在较大差异性,甚至会出现某些观测构型下的成像弧段无法进行二维成像的情况,因此快速准确的筛选出有用的Bi-ISAR成像弧段非常必要。针对空中运动目标的成像边界与成像弧段快速优选需求,该文提出了一种基于双基角一阶变化率约束的Bi-ISAR成像边界分析与快速成像弧段选取方法。首先构建了空中运动目标Bi-ISAR成像模型,推导出了与双基角一阶变换率相关的双基斜距历程表达式;然后分别从距离走动量和方位二次相位两个维度,建立了双基角一阶变化率与Bi-ISAR成像性能的理论边界,并分别给出了各自独立的成像边界约束条件;最后基于最小融合准则,给出了双基角一阶变化率约束下的Bi-ISAR成像边界,证明了基于双基角一阶变化率的边界约束等效为对Bi-ISAR成像弧段的选取,并基于仿真数据和实测数据进行了验证,仿真数据和实测数据的处理结果均验证了该文方法的有效性。Abstract: Bistatic inverse synthetic aperture radar (Bi-ISAR) imaging has a broad application in air and space target detection and recognition. However, due to the complexity and variability of the bistatic configuration, the Bi-ISAR imaging performance under different observation configurations varies greatly. There may even be imaging arcs under some observation configurations in which the two-dimensional imaging results cannot be acquired. Therefore,, it is quite essential to find out the useful Bi-ISAR imaging arcs quickly and accurately. Aiming at the need of fast and optimal selection of imaging boundary and imaging arcs for aerial moving targets, a boundary analysis and fast imaging arc selection method for Bi-ISAR imaging with bistatic angle derivative constraint is proposed. Firstly, the Bi-ISAR imaging model of moving target is constructed, and the expression of bistatic slant range history related to the bistatic angle derivative is derived. Then, the boundary of the Bi-ISAR imaging performance is theoretically analyzed from the dimensions of range cell migration (RCM) and azimuth-quadratic phase (AQP), and the corresponding constraints are figured out. Finally, based on the minimum fusion criterion, the Bi-ISAR imaging boundary constrained by the bistatic angle derivative is presented. Moreover, it is proved that the boundary constraint of the bistatic angle derivative is equivalent to the selection of the Bi-ISAR imaging arc. The processing results of both simulation data and measured data verify the effectiveness of the proposed method.
-
表 1 雷达仿真系统参数
Table 1. Radar parameters for simulation experiment
参数 数值 参数 数值 目标飞行速度 50m/s, 120m/s,200m/s 信号带宽 500 MHz 目标角速度 2.5 mrad/s, 6 mrad/s,
10 mrad/s最短斜距 10 Km 目标角加速度 0.01 mrad/s2 信号时宽 25 μs 3 dB波束宽度 3° 目标高度 1 Km 脉冲重复频率 100 Hz 初始双基角 45° 表 2 目标速度为50 m/s情况下的边缘点目标的定量评估
Table 2. Quantitative evaluation results of edge points under the target velocity of 50 m/s
目标 项目 PSLR(dB) ISLR(dB) 最上边缘点 距离维 – 13.2850 – 11.0705 方位维 – 13.1720 – 10.9162 最左边缘点 距离维 – 13.2938 – 11.0818 方位维 – 12.9307 – 10.6883 最右边缘点 距离维 – 13.2873 – 11.0844 方位维 – 12.9270 – 10.6526 最下边缘点 距离维 – 13.2279 – 11.0688 方位维 – 13.2179 – 11.0100 表 3 目标速度为120 m/s情况下的边缘点目标的定量评估
Table 3. Quantitative evaluation results of edge points under the target velocity of 120m/s
目标 项目 PSLR (dB) ISLR (dB) 最上边缘点 距离维 – 13.2543 – 11.0647 方位维 – 12.4715 – 10.1032 最左边缘点 距离维 – 13.2629 – 11.0415 方位维 – 12.2318 – 9.9696 最右边缘点 距离维 – 13.3084 – 11.0418 方位维 – 12.2530 – 9.9648 最下边缘点 距离维 – 13.3289 – 11.0704 方位维 – 12.4596 – 10.1217 表 4 目标速度为200 m/s情况下的边缘点目标的定量评估
Table 4. Quantitative evaluation results of edge points under the target velocity of 200 m/s
目标 项目 PSLR (dB) ISLR (dB) 最上边缘点 距离维 – 13.2751 – 11.0256 方位维 – 8.6383 – 6.7553 最左边缘点 距离维 – 13.2841 – 11.0411 方位维 – 9.8544 – 7.6942 最右边缘点 距离维 – 13.2758 – 11.0422 方位维 – 9.8404 – 7.6784 最下边缘点 距离维 – 13.2893 – 11.0346 方位维 – 8.6907 – 6.7839 -
[1] SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York: McGraw-Hill, 2008: 23.1–23.36. [2] RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005.1-38. [3] WANG R and DENG Yunkai. Bistatic SAR System and Signal Processing Technology[M]. Singapore: Springer, 2018. doi: 10.1007/978-981-10-3078-9.1-40. [4] CUOMO K M, COUTTS S D, MCHARG J C, et al. Wideband aperture coherence processing for next generation radar (NexGen)[R]. MIT Lincoln Laboratory Report NG-3, 2004. [5] 鲁耀兵, 高红卫. 分布孔径雷达[M]. 北京: 国防工业出版社, 2017: 216–217.LU Yaobing and GAO Hongwei. Distributed Aperture Radar[M]. Beijing: National Defense Industry Press, 2017: 216–217. [6] 刘泉华, 张凯翔, 梁振楠, 等. 地基分布式相参雷达技术研究综述[J]. 信号处理, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001.LIU Quanhua, ZHANG Kaixiang, LIANG Zhennan, et al. Research overview of ground-based distributed coherent aperture radar[J]. Journal of Signal Processing, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001. [7] 王元昊, 王宏强, 杨琪. 动平台分布孔径雷达相参合成探测方法与试验验证[J]. 雷达学报(中英文), 2024, 13(6): 1279–1297. doi: 10.12000/JR24141.WANG Yuanhao, WANG Hongqiang, and YANG Qi. Coherent detection method for moving platform based distributed aperture radar and experimental verification[J]. Journal of Radars, 2024, 13(6): 1279–1297. doi: 10.12000/JR24141. [8] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005. (查阅网上资料,未找到本条文献页码与英文信息,请核对). [9] 杨建宇. 双基合成孔径雷达[M]. 北京: 国防工业出版社, 2017. (查阅网上资料,未找到本条文献页码信息,请核对).YANG Jianyu. Bistatic Synthetic Aperture Radar[M]. Beijing: National Defense Industry Press, 2017. [10] 曾涛. 双基地合成孔径雷达发展现状与趋势分析[J]. 雷达学报, 2012, 1(4): 329–341. doi: 10.3724/SP.J.1300.2012.20093.ZENG Tao. Bistatic SAR: State of the art and development trend[J]. Journal of Radars, 2012, 1(4): 329–341. doi: 10.3724/SP.J.1300.2012.20093. [11] 邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102.XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102. [12] ZENG Tao, WANG Rui, LI Feng, et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3108–3118. doi: 10.1109/TGRS.2012.2219057. [13] WANG R, WANG Wei, SHAO Yunfeng, et al. First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 842–849. doi: 10.1109/TGRS.2015.2467176. [14] SHI Tianyue, MAO Xinhua, JAKOBSSON A, et al. Efficient BiSAR PFA wavefront curvature compensation for arbitrary radar flight trajectories[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5221514. doi: 10.1109/TGRS.2023.3332759. [15] WU Junjie, LI Zhongyu, HUANG Yulin, et al. Focusing bistatic forward-looking SAR with stationary transmitter based on Keystone transform and nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 148–152. doi: 10.1109/LGRS.2013.2250904. [16] PU Wei, WU Junjie, HUANG Yulin, et al. Fast factorized backprojection imaging algorithm integrated with motion trajectory estimation for bistatic forward-looking SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(10): 3949–3965. doi: 10.1109/JSTARS.2019.2945118. [17] LI Yachao, ZHANG Tinghao, MEI Haiwen, et al. Focusing translational-variant bistatic forward- looking SAR data using the modified omega-K algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203916. doi: 10.1109/TGRS.2021.3063780. [18] 武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213.WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213. [19] LI Wenchao, WANG Lei, LIU Dan, et al. Raw data simulation under undulating terrain for bistatic SAR with arbitrary configuration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12878–12892. doi: 10.1109/JSTARS.2024.3427704. [20] SUN Zhichao, SUN Huarui, AN Hongyang, et al. Trajectory optimization for maneuvering platform bistatic SAR with geosynchronous illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5203715. doi: 10.1109/TGRS.2024.3358303. [21] RODRIGUES-SILVA E, RODRIGUEZ-CASSOLA M, KRIEGER G, et al. GNSS-based phase synchronization for bistatic and multistatic synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5213614. doi: 10.1109/TGRS.2024.3406797. [22] TANG Tao, WANG Pengbo, ZENG Hongcheng, et al. An efficient coarse-to-fine doppler parameter search method for moving target detection using GNSS-based passive bistatic radar[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3509105. doi: 10.1109/LGRS.2024.3450209. [23] FAN Lei, WANG Hongqiang, YANG Qi, et al. High-quality airborne terahertz video SAR imaging based on echo-driven robust motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 2001817. doi: 10.1109/TGRS.2024.3357697. [24] ZHANG Tinghao, LI Yachao, YUAN Mingze, et al. Focusing highly squinted FMCW-SAR data using the modified wavenumber-domain algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 1999–2011. doi: 10.1109/JSTARS.2023.3266886. [25] FAN Lei, WANG Hongqiang, YANG Qi, et al. THz-ViSAR-oriented fast indication and imaging of rotating targets based on nonparametric method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5217515. doi: 10.1109/TGRS.2024.3427653. [26] ZHANG Lei, DUAN Jia, QIAO Zhijun, et al. Phase adjustment and ISAR imaging of maneuvering targets with sparse apertures[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1955–1973. doi: 10.1109/TAES.2013.130115. [27] 田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术综述[J]. 雷达学报, 2020, 9(5): 765–802. doi: 10.12000/JR20060.TIAN Biao, LIU Yang, HU Pengjiang, et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9(5): 765–802. doi: 10.12000/JR20060. [28] FU Jixiang, XING Mengdao, and AMIN M G. ISAR imaging motion compensation in low SNR environments using phase gradient and filtering techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4296–4312. doi: 10.1109/TAES.2021.3098129. [29] MAI Yanbo, ZHANG Shuanghui, JIANG Weidong, et al. ISAR imaging of targets exhibiting micro-motion under the joint constraints of low SNR and sparse rate[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6233–6249. doi: 10.1109/TAES.2023.3273203. [30] CHEN V C, DES ROSIERS A, and LIPPS R. Bi-static ISAR range-Doppler imaging and resolution analysis[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–5. doi: 10.1109/RADAR.2009.4977060. [31] MARTORELLA M. Analysis of the robustness of bistatic inverse synthetic aperture radar in the presence of phase synchronisation errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2673–2689. doi: 10.1109/TAES.2011.6034658. [32] MARTORELLA M, CATALDO D, and BRISKEN S. Bistatically equivalent monostatic approximation for bistatic ISAR[C]. 2013 IEEE Radar Conference (RadarCon13), Ottawa, Canada, 2013: 1–5. doi: 10.1109/RADAR.2013.6586074. [33] KANG B S, BAE J H, KANG M S, et al. Bistatic-ISAR cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1962–1973. doi: 10.1109/TAES.2017.2677798. [34] DING Jiabao, LI Yachao, WANG Jiadong, et al. Joint motion compensation and distortion correction for maneuvering target bistatic ISAR imaging based on parametric minimum entropy optimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5118919. doi: 10.1109/TGRS.2022.3213579. [35] SHI Hongyin, YANG Zixin, YANG Ting, et al. Bistatic ISAR imaging for maneuvering target with complex motion based on phase retrieval-assisted ICBA[J]. IEEE Sensors Journal, 2025, 25(10): 17434–17446. doi: 10.1109/JSEN.2025.3549833. [36] DING Jiabao, LI Yachao, WANG Jiadong, et al. Integration of high-order motion compensation and 2-D scaling for maneuvering target bistatic ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 60: 5205120. doi: 10.1109/TGRS.2025.3533881. [37] 朱瀚神, 胡文华, 郭宝锋, 等. 双基地ISAR稀疏孔径机动目标MTRC补偿成像算法[J]. 系统工程与电子技术, 2023, 45(7): 2022–2030. doi: 10.12305/j.issn.1001-506X.2023.07.12.ZHU Hanshen, HU Wenhua, GUO Baofeng, et al. Bistatic ISAR sparse aperture maneuvering target MTRC compensation imaging algorithm[J]. Systems Engineering and Electronics, 2023, 45(7): 2022–2030. doi: 10.12305/j.issn.1001-506X.2023.07.12. [38] ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Bayesian bistatic ISAR imaging for targets with complex motion under low SNR condition[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2447–2460. doi: 10.1109/TIP.2018.2803300. [39] 符吉祥, 张超, 邢文洁, 等. 基于修正牛顿法的双基ISAR空变补偿快速成像与几何校正图像定标方法[J]. 雷达学报(中英文) 待出版. doi: 10.12000/JR25052. (查阅网上资料,未找到本条文献卷期号与页码信息,请核对).FU Jixiang, ZHANG Chao, XING Wenjie, et al. Fast space-variant phase error compensation and geometric correction for bistatic ISAR imaging using a modified newton’s method[J]. Journal of Radars. doi: 10.12000/JR25052. [40] LI Zhongyu, ZHANG Xiaodong, YANG Qing, et al. Hybrid SAR-ISAR image formation via joint FrFT-WVD processing for BFSAR ship target high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5215713. doi: 10.1109/TGRS.2021.3117280. [41] QIAN Guangzhao and WANG Yong. Monostatic-equivalent algorithm via taylor expansion for BiSAR ship target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5200919. doi: 10.1109/TGRS.2022.3233384. [42] CHEN Hongmeng, LI Jun, ZHOU Rui, et al. Optimal Bi-ISAR imaging arc selection method with bistatic angle derivative constraint[C]. 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 2024: 1–4. doi: 10.1109/ICSIDP62679.2024.10869106. [43] CHEN V C and QIAN Shi’e. Joint time-frequency transform for radar range-Doppler imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 486–499. doi: 10.1109/7.670330. [44] 汪玲, 朱兆达, 朱岱寅. 机载ISAR舰船侧视和俯视成像时间段选择[J]. 电子与信息学报, 2008, 30(12): 2835–2839. doi: 10.3724/SP.J.1146.2007.00919.WANG Ling, ZHU Zhaoda, and ZHU Daiyin. Interval selections for side-view or top-view imaging of ship targets with airborne ISAR[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2835–2839. doi: 10.3724/ SP.J.1146.2007.00919. doi: 10.3724/SP.J.1146.2007.00919. [45] LI Ning, SHEN Qingyuan, WANG Ling, et al. Optimal time selection for ISAR imaging of ship targets based on time-frequency analysis of multiple scatterers[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4017505. doi: 10.1109/LGRS.2021.3103915. [46] CAO Rui, WANG Yong, ZHANG Yun, et al. Optimal time selection for ISAR imaging of ship target via novel approach of centerline extraction with RANSAC algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9987–10005. doi: 10.1109/ JSTARS.2022.3220496. doi: 10.1109/JSTARS.2022.3220496. [47] SHAO Shuai, ZHANG Lei, and LIU Hongwei. An optimal imaging time interval selection technique for marine targets ISAR imaging based on sea dynamic prior information[J]. IEEE Sensors Journal, 2019, 19(13): 4940–4953. doi: 10.1109/JSEN.2019.2903399. [48] 王雅慧, 杨青, 李中余, 等. 双基SAR舰船目标成像时段寻优成像处理方法[J]. 雷达学报(中英文) 待出版. doi: 10.12000/JR24193. (查阅网上资料,未找到本条文献卷期号与页码信息,请核对).WANG Yahui, YANG Qing, LI Zhongyu, et al. Imaging time optimization method for ship targets of bistatic SAR[J]. Journal of Radars. doi: 10.12000/JR24193. [49] JIANG Yicheng, WEI Jin, and LIU Zitao. Bistatic ISAR imaging and scaling algorithm based on the estimation of bistatic factor and effective rotation velocity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 8522–8538. doi: 10.1109/TAES.2024.3432109. -