基于机器学习的Sentinel-1 SAR多普勒频移风、浪响应建模与海流反演

车佳恒 闫秋双 范陈清 孟俊敏 张杰

车佳恒, 闫秋双, 范陈清, 等. 基于机器学习的Sentinel-1 SAR多普勒频移风、浪响应建模与海流反演[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25099
引用本文: 车佳恒, 闫秋双, 范陈清, 等. 基于机器学习的Sentinel-1 SAR多普勒频移风、浪响应建模与海流反演[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25099
CHE Jiaheng, YAN Qiushuang, FAN Chenqing, et al. Machine learning-based modeling of wind and wave responses in sentinel-1 SAR doppler shifts for ocean current retrieval[J]. Journal of Radars, in press. doi: 10.12000/JR25099
Citation: CHE Jiaheng, YAN Qiushuang, FAN Chenqing, et al. Machine learning-based modeling of wind and wave responses in sentinel-1 SAR doppler shifts for ocean current retrieval[J]. Journal of Radars, in press. doi: 10.12000/JR25099

基于机器学习的Sentinel-1 SAR多普勒频移风、浪响应建模与海流反演

DOI: 10.12000/JR25099 CSTR: 32380.14.JR25099
基金项目: 国家自然科学基金(42206178)
详细信息
    作者简介:

    车佳恒,硕士生,主要研究方向为SAR多普勒雷达海流探测技术

    闫秋双,副教授,主要研究方向为海洋微波遥感

    范陈清,副研究员,主要研究方向为海洋微波遥感

    孟俊敏,研究员,主要研究方向为SAR海洋遥感应用、海洋内波遥感探测技术研究

    张 杰,院长,主要研究方向为海洋遥感遥测研究

    通讯作者:

    闫秋双yanqiushuang@upc.edu.cn

    责任主编:王小青 Corresponding Editor: WANG Xiaoqing

  • 中图分类号: TN95

Machine Learning-Based Modeling of Wind and Wave Responses in Sentinel-1 SAR Doppler Shifts for Ocean Current Retrieval

Funds: The National Natural Science Foundation of China under Grant (42206178)
More Information
  • 摘要: 海流在全球气候调节中具有重要作用。合成孔径雷达(SAR)凭借其对海表多普勒频移的观测能力,为高分辨率海流探测提供了有效的数据支撑。然而,SAR多普勒频移含有多种贡献项,要从中准确反演海流,需要进行非地球物理校正,并准确估算风-浪致多普勒频移的贡献。本研究基于Sentinel-1 SAR多普勒频移观测数据,在完成精确的非地球物理校正后,构建了经粒子群算法优化的BPNN与XGBoost模型描述SAR风-浪致多普勒频移与海面风-浪参数间的非线性映射关系,并通过系统对比评估确定了性能更优的模型,实现了海流流速的高精度反演。结果表明,与BPNN模型相比,XGBoost模型在性能上实现了显著提升。XGBoost模型估计的多普勒频移均方根误差(RMSE)约为4.043 Hz,较BPNN模型降低了2.898 Hz;与HYCOM海流相比,XGBoost模型反演海流的RMSE约为0.202 m/s,较BPNN模型降低了0.122 m/s;与HF雷达观测流速对比,XGBoost模型反演海流的RMSE为0.21 m/s,较BPNN降低了16%。本研究为星载SAR海流反演提供了一种更为精确的技术方法。

     

  • 图  1  获取的Sentinel-1A IW模式OCN数据产品的空间分布图

    Figure  1.  Spatial distribution of Sentinel-1A IW OCN data used in this study

    图  2  数据集中的分布直方图

    Figure  2.  Distribution histogram of the data set

    图  3  BPNN网络结构示意图

    Figure  3.  Structural diagram of BPNN

    图  4  模型训练过程图

    Figure  4.  Model training process diagram

    图  5  BPNN特征分析

    Figure  5.  BPNN feature scatter distribution plot

    图  6  XGBoost特征分析

    Figure  6.  XGBoost feature scatter distribution plot

    图  7  2019年1月10日12:26获取的Sentinel-1A干涉宽幅(IW)陆地场景的多普勒频移图

    Figure  7.  Doppler shift map derived from the Sentinel-1A Interferometric Wide (IW) swath acquired over land on January 10, 2019 at 12:26 UTC.

    图  8  图7案例对应的多普勒频移剖面

    Figure  8.  Doppler shift profile corresponding to the case in Fig. 7

    图  9  去除扇形误差${f_{{sca} }}$的过程图

    Figure  9.  Geometric correction workflow for fan distortion${f_{{sca} }}$

    图  10  $ {f}_{\rm{elec}} $+$ {f}_{{\mathrm{others}}} $与入射角的线性关系

    Figure  10.  Linear fitting of $ {f}_{\rm{elec}} $ + $ {f}_{{\mathrm{others}}} $ with incident angle

    图  11  2019年1月22日23:19获取的海面SAR图像中子带1的多普勒频移

    Figure  11.  Doppler frequency shift of swath 1 in SAR image obtained from sea surface at 23:19 on January 22nd, 2019

    图  12  BPNN和XGBoost模型预测风-浪致多普勒频移与SAR观测值的对比散点图

    Figure  12.  Comparison of wind-wave-induced Doppler shift predictions (BPNN vs. XGBoost) with SAR observations

    图  13  不同风速区间BPNN预测风浪多普勒频移与SAR观测值的对比散点图

    Figure  13.  Comparison of BPNN-predicted wind-wave Doppler shift vs. SAR observations across different wind speed ranges

    图  14  不同风速区间XGBoost预测风浪多普勒与SAR观测值的对比散点图

    Figure  14.  Comparison of XGBoost-predicted wind-wave Doppler shift vs. SAR observations across different wind speed ranges

    图  15  BPNN和XGBoost模型预测风浪多普勒频移与SAR观测值之间偏差的误差棒图

    Figure  15.  Error bar plots of deviations between BPNN/XGBoost predicted wind-wave Doppler shift and SAR observations

    图  16  测试集上基于BPNN和XGBoost模型反演海流与HYCOM海流的对比散点图

    Figure  16.  Scatter plot of retrieved ocean current velocitiesbased on BPNN and XGBoost versus HYCOM currect from the test dataset

    图  17  BPNN和XGBoost模型测试集上反演海流与HYCOM海流之间偏差的误差棒图

    Figure  17.  Error bar plots of deviations between predicted ocean current velocity (from BPNN and XGBoost models) and HYCOM data in the validation region

    图  18  验证区域示意图

    Figure  18.  Validation region schematic diagram

    图  19  在个例上反演海流流速与HYCOM海流流速的对比散点图

    Figure  19.  Scatter plot of the comparison between the inverted ocean current velocity and the HYCOM ocean current velocity in the individual case

    图  20  湾流区域BPNN和XGBoost模型反演海流的空间分布特征比较

    Figure  20.  Comparison of current characteristics retrieved by BPNN and XGBoost models in the Gulf Stream region

    图  21  黑潮区域BPNN和XGBoost模型反演海流的空间分布特征比较

    Figure  21.  Comparison of current characteristics retrieved by BPNN and XGBoost models in the Kuroshio Current region

    图  22  反演海流流速与HF海流流速的对比散点图

    Figure  22.  Scatter plot comparing retrieved ocean current velocities with HF radar-derived current velocities

    表  1  模型超参数设置

    Table  1.   Model hyperparameter settings

    模型超参数
    BPNNLayer1_units:16, layer2_units:8, learning_rate:0.01,
    batch:512, epochs:100
    XGBoostBooster:gbtree, n_estimators:152,
    learning_rate:0.04, max_depth:7
    min_child_weight:10
    下载: 导出CSV
  • [1] MOISEEV A, JOHNSEN H, HANSEN W M, et al. Evaluation of radial ocean surface currents derived from Sentinel‐1 IW doppler shift using coastal radar and Lagrangian surface drifter observations[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2019JC015743. doi: 10.1029/2019JC015743.
    [2] 何宜军, 刘保昌, 张彪, 等. 海面流场卫星遥感方法综述[J]. 广西科学, 2015, 22(3): 294–300. doi: 10.13656/j.cnki.gxkx.2015.03.005.

    HE Yijun, LIU Baochang, ZHANG Biao, et al. Overview on satellite remote-sensing methods for sea-surface-current measurement[J]. Guangxi Sciences, 2015, 22(3): 294–300. doi: 10.13656/j.cnki.gxkx.2015.03.005.
    [3] POTIN P, ROSICH B, MIRANDA N, et al. Sentinel-1 mission status[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 5525–5528. doi: 10.1109/IGARSS.2017.8128255.
    [4] ROMEISER R, UFERMANN S, and ALPERS W. Remote sensing of oceanic current features by synthetic aperture radar—achievements and perspectives[J]. Annales Des Télécommunications, 2001, 56(11): 661–671. doi: 10.1007/BF02995560.
    [5] CHAPRON B, COLLARD F, and ARDHUIN F. Direct measurements of ocean surface velocity from space: Interpretation and validation[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07008. doi: 10.1029/2004JC002809.
    [6] JOHANNESSEN J A, CHAPRON B, COLLARD F, et al. Direct ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR observations[J]. Geophysical Research Letters, 2008, 35(22): L22608. doi: 10.1029/2008GL035709.
    [7] MOUCHE A A, COLLARD F, CHAPRON B, et al. On the use of Doppler shift for sea surface wind retrieval from SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2901–2909. doi: 10.1109/TGRS.2011.2174998.
    [8] HANSEN M, COLLARD F, DAGESTAD K, et al. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3582–3592. doi: 10.1109/TGRS.2011.2153864.
    [9] ELYOUNCHA A, ERIKSSON L E B, JOHNSEN H, et al. Using Sentinel-1 ocean data for mapping sea surface currents along the southern Norwegian Coast[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 8058–8061. doi: 10.1109/IGARSS.2019.8898468.
    [10] MOISEEV A, JOHANNESSEN J A, and JOHNSEN H. Towards retrieving reliable ocean surface currents in the coastal zone from the Sentinel-1 Doppler shift observations[J]. Journal of Geophysical Research: Oceans, 2022, 127(5): e2021JC018201. doi: 10.1029/2021JC018201.
    [11] YANG Zhonghao, LIU Lei, WANG Jing, et al. Extrapolation of electromagnetic pointing error corrections for Sentinel-1 Doppler currents from land areas to the open ocean[J]. Remote Sensing of Environment, 2023, 297: 113788. doi: 10.1016/j.rse.2023.113788.
    [12] JOHNSEN H, NILSEN V, ENGEN G, et al. Ocean doppler anomaly and ocean surface current from Sentinel 1 tops mode[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 3993–3996. doi: 10.1109/IGARSS.2016.7730038.
    [13] MOISEEV A, JOHNSEN H, JOHANNESSEN J A, et al. On removal of sea state contribution to Sentinel-1 Doppler shift for retrieving reliable ocean surface current[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016288. doi: 10.1029/2020JC016288.
    [14] YANG Zhonghao, WANG Jing, LIU Lei, et al. Estimating effects of wind and waves on the Doppler centroid frequency shift for the SAR retrieval of ocean currents[J]. Remote Sensing of Environment, 2024, 311: 114312. doi: 10.1016/j.rse.2024.114312.
    [15] SHAO Weizeng, ZHOU Yuhang, HU Yuyi, et al. Range current retrieval fromsentinel-1 SAR ocean product based on deep learning[J]. Remote Sensing Letters, 2024, 15(2): 145–156. doi: 10.1080/2150704X.2024.2305176.
    [16] FAN Shengren, KUDRYAVTSEV V, YUROVSKY Y, et al. Reconstructing ocean surface current vector field from SAR doppler shift measurements[J]. Remote Sensing of Environment, 2025, 328: 114855. doi: 10.1016/j.rse.2025.114855.
    [17] CHEN Tianqi and GUESTRIN C. XGBoost: A scalable tree boosting system[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 785–794. doi: 10.1145/2939672.2939785.
    [18] BORISOV V, LEEMANN T, SEßLER K, et al. Deep neural networks and tabular data: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(6): 7499–7519. doi: 10.1109/TNNLS.2022.3229161.
    [19] GRINSZTAJN L, OYALLON E, and VAROQUAUX G. Why do tree-based models still outperform deep learning on typical tabular data?[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 37. doi: 10.5555/3600270.3600307.
    [20] MURPHY D and JANZEN C. Advances in in-situ ocean measurements[M]. VENKATESAN R, TANDON A, D'ASARO E, et al. Observing the Oceans in Real Time. Cham: Springer, 2018: 141–162. doi: 10.1007/978-3-319-66493-4_8.
    [21] Copernicus. Sentiwiki:S-1mission[EB/OL].2023. https://sentiwiki.copernicus.eu/web/s1-mission.
    [22] DE ZAN F and MONTI GUARNIERI A. TOPSAR: Terrain observation by progressive scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2352–2360. doi: 10.1109/TGRS.2006.873853.
    [23] Copernicus Marine Service. Product User Manual For Global Ocean Waves Analysis and Forecast [EB/OL]. CMEMS-GLO-PUM-001-032,2023. https://documentation.marine.copernicus.eu/PUM/CMEMS-GLO-PUM-001-032.pdf.
    [24] LAW-CHUNE S, AOUF L, DALPHINET A, et al. WAVERYS: A CMEMS global wave reanalysis during the altimetry period[J]. Ocean Dynamics, 2021, 71(3): 357–378. doi: 10.1007/s10236-020-01433-w.
    [25] ZHANG Yixuan, YUE Songshan, XU Kai, et al. Performance analysis of global HYCOM flow field using Argo profiles[J]. International Journal of Digital Earth, 2023, 16(1): 3536–3559. doi: 10.1080/17538947.2023.2252407.
    [26] CHASSIGNET E P, HURLBURT H E, SMEDSTAD O M, et al. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system[J]. Journal of Marine Systems, 2007, 65(1/4): 60–83. doi: 10.1016/j.jmarsys.2005.09.016.
    [27] SAVAGE J A, TOKMAKIAN R T, and BATTEEN M L. Assessment of the HYCOM velocity fields during Agulhas Return Current Cruise 2012[J]. Journal of Operational Oceanography, 2015, 8(1): 11–24. doi: 10.1080/1755876X.2015.1014637.
    [28] KABIR A, LEMONGO-TCHAMBA I, and FERNANDEZ A. An assessment of available ocean current hydrokinetic energy near the North Carolina shore[J]. Renewable Energy, 2015, 80: 301–307. doi: 10.1016/j.renene.2015.02.011.
    [29] LUECKE C A, ARBIC B K, RICHMAN J G, et al. Statistical comparisons of temperature variance and kinetic energy in global ocean models and observations: Results from mesoscale to internal wave frequencies[J]. Journal of Geophysical Research: Oceans, 2020, 125(5): e2019JC015306. doi: 10.1029/2019JC015306.
    [30] WANG Haodi, CHEN Shiyao, WANG Ning, et al. Evaluation of multi-model current data in the East/Japan Sea[C]. 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 2020: 486–491. doi: 10.1109/ICICSP50920.2020.9232090.
    [31] HARLAN J, TERRILL E, HAZARD L, et al. The integrated ocean observing system HF radar network[C]. OCEANS 2015-MTS/IEEE Washington, Washington, USA, 2015: 1–4. doi: 10.23919/OCEANS.2015.7404587.
    [32] LORENTE P, SOTO-NAVARRO J, ALVAREZ FANJUL E, et al. Accuracy assessment of high frequency radar current measurements in the Strait of Gibraltar[J]. Journal of Operational Oceanography, 2014, 7(2): 59–73. doi: 10.1080/1755876X.2014.11020300.
    [33] KENNEDY J and EBERHART R. Particle swarm optimization[C]. ICNN'95 - International Conference on Neural Networks, Perth, Australia, 1995: 1942–1948. doi: 10.1109/ICNN.1995.488968.
    [34] MARCILIO W E and ELER D M. From explanations to feature selection: Assessing SHAP values as feature selection mechanism[C]. 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Porto de Galinhas, Brazil, 2020: 340–347. doi: 10.1109/SIBGRAPI51738.2020.00053.
    [35] ANDRES M. Spatial and temporal variability of the gulf stream near cape Hatteras[J]. Journal of Geophysical Research: Oceans, 2021, 126(9): e2021JC017579. doi: 10.1029/2021JC017579.
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-29

目录

    /

    返回文章
    返回