基于FCNN和ICAE的SAR图像目标识别方法

喻玲娟 王亚东 谢晓春 林赟 洪文

喻玲娟, 王亚东, 谢晓春, 林赟, 洪文. 基于FCNN和ICAE的SAR图像目标识别方法[J]. 雷达学报, 2018, 7(5): 622-631. doi: 10.12000/JR18066
引用本文: 喻玲娟, 王亚东, 谢晓春, 林赟, 洪文. 基于FCNN和ICAE的SAR图像目标识别方法[J]. 雷达学报, 2018, 7(5): 622-631. doi: 10.12000/JR18066
Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066
Citation: Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066

基于FCNN和ICAE的SAR图像目标识别方法

DOI: 10.12000/JR18066
基金项目: 国家自然科学基金(61431018,61501210,61571421),江西省自然科学基金(20161BAB202054),江西省教育厅科技项目(GJJ150684,GJJ170825)
详细信息
    作者简介:

    喻玲娟(1982–),女,籍贯江西,博士,江西理工大学副教授,硕士生导师,中国科学院电子学研究所博士后,研究方向为合成孔径雷达信号处理。E-mail: lingjuanyusmile@163.com

    王亚东(1993–),男,籍贯江苏,江西理工大学在读硕士研究生,研究方向为合成孔径雷达自动目标识别。E-mail: wangyadong183@163.com

    谢晓春(1975–),男,籍贯江西,博士,赣南师范大学副教授,硕士生导师,研究方向为合成孔径雷达信号处理。E-mail: xiexiaochun@gnnu.cn

    林 赟(1983–),女,籍贯浙江,博士,中国科学院电子学研究所副研究员,硕士生导师,研究方向为合成孔径雷达3维成像技术、多角度SAR成像基础理论与方法研究。E-mail: ylin@mail.ie.ac.cn

    洪 文(1968–),女,籍贯陕西,博士,中国科学院电子学研究所研究员,博士生导师,主要研究方向为合成孔径雷达成像与系统及其应用、极化/干涉合成孔径雷达数据处理及应用、3维微波成像新概念新体制新方法等。E-mail: whong@mail.ie.ac.cn

    通讯作者:

    喻玲娟  lingjuanyusmile@163.com

SAR ATR Based on FCNN and ICAE

Funds: The National Natural Science Foundation of China (61431018, 61501210, 61571421), The Natural Science Foundation of Jiangxi Province (20161BAB202054), The Science and Technology Project of Jiangxi Provincial Education Department (GJJ150684, GJJ170825)
  • 摘要: 近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得更高的识别率,但在训练过程中仍需要大量的带标签训练样本。该文提出一种基于FCNN和改进的卷积自编码器(Improved Convolutional Auto-Encoder, ICAE)的SAR图像目标识别方法,即先用ICAE无监督训练方式获得的编码器网络参数初始化FCNN的部分参数,后用带标签训练样本对FCNN进行训练。基于MSTAR数据集的十类目标分类实验结果表明,在不扩充带标签训练样本的情况下,该方法不仅能获得98.14%的平均正确识别率,而且具有较强的抗噪声能力。

     

  • 图  1  CAE结构示意图

    Figure  1.  The structure of CAE

    图  3  FCNN的结构和前向传播

    Figure  3.  The structure and forward propagation of FCNN

    图  2  基于FCNN和ICAE的识别方法

    Figure  2.  The recognition method based on FCNN and ICAE

    图  4  ICAE的结构和前向传播

    Figure  4.  The structure and forward propagation of ICAE

    图  5  10类地面军事目标光学图像及其SAR图像

    Figure  5.  Ten types of ground military targets: Optical images versus SAR images

    图  6  4种方法的平均正确识别率随带标签的训练样本扩充倍数的变化

    Figure  6.  The average correct recognition rate of the four methods varies with the multiples of labeled training samples

    图  7  加不同比例噪声的SAR图像

    Figure  7.  SAR images with noise of different proportions

    图  8  4种方法的平均正确识别率随噪声所占比例的变化

    Figure  8.  The average correct recognition rate of the four methods varies with the noise proportion

    图  9  不同信噪比的SAR图像

    Figure  9.  SAR images with different SNR

    图  10  4种方法的平均正确识别率随信噪比的变化

    Figure  10.  The average correct recognition rate of the four methods varies with SNR

    表  1  训练样本和测试样本数量

    Table  1.   The number of training and testing images

    型号 训练集 测试集
    角度 数量 角度 数量
    BMP-2 17° 233 15° 195
    BTR-70 17° 233 15° 196
    BTR-60 17° 256 15° 195
    BRDM-2 17° 298 15° 274
    T-72 17° 232 15° 196
    T-62 17° 299 15° 273
    2S1 17° 299 15° 274
    D7 17° 299 15° 274
    ZIL-131 17° 299 15° 274
    ZSU-234 17° 299 15° 274
    下载: 导出CSV

    表  2  FCNN, ICAE, CNN和CAE的网络结构

    Table  2.   The network structures of FCNN, ICAE, CNN and CAE

    FCNN ICAE CNN CAE
    Conv.16@3×3
    Conv.16@3×3/stride=2
    Conv.16@3×3
    Conv.16@3×3/stride=2
    Conv.16@3×3
    Maxpooling@2×2
    Conv.16@3×3
    Maxpooling@2×2
    Conv.32@3×3
    Conv.32@3×3/stride=2
    Conv.32@3×3
    Conv.32@3×3/stride=2
    Conv.32@3×3
    Maxpooling@2×2
    Conv.32@3×3
    Maxpooling@2×2
    Conv.64@3×3
    Conv.64@3×3/stride=2
    Conv.64@3×3
    Conv.64@3×3/stride=2
    Conv.64@3×3
    Maxpooling@2×2
    Conv.64@3×3
    Maxpooling@2×2
    Conv.128@3×3
    Conv.128@3×3/stride=2
    Conv.128@3×3
    Conv.128@3×3/stride=2
    Conv.128@3×3
    Maxpooling@2×2
    Conv.128@3×3
    Maxpooling@2×2
    Conv.10@4×4
    Softmax
    Unpooling@2×2
    Deconv.64@3×3
    Conv.10@4×4
    Softmax
    Unpooling@2×2
    Deconv.64@3×3
    Unpooling@2×2
    Deconv.32@3×3
    Unpooling@2×2
    Deconv.32@3×3
    Unpooling@2×2
    Deconv.16@3×3
    Unpooling@2×2
    Deconv.16@3×3
    Deconv.1@3×3 Deconv.1@3×3
    下载: 导出CSV

    表  3  基于FCNN和ICAE的识别结果

    Table  3.   The recognition results based on FCNN and ICAE

    目标型号 识别结果 正确识别率
    (%)
    2S1 BMP-2 BRDM-2 BTR-60 BTR-70 D7 T-62 T-72 ZIL-131 ZSU-234
    2S1 265 0 1 0 2 0 0 6 0 0 96.72
    BMP-2 1 191 0 0 1 1 0 1 0 0 98.45
    BRDM-2 0 0 270 3 0 0 0 0 1 0 98.54
    BTR-60 0 0 2 186 0 0 1 0 2 4 95.38
    BTR-70 3 0 0 0 193 0 0 0 0 0 98.47
    D7 0 0 2 0 0 272 0 0 0 0 99.27
    T-62 0 0 0 0 0 0 270 0 0 3 98.90
    T-72 0 1 0 0 1 0 0 194 0 0 98.98
    ZIL-131 0 0 0 0 0 1 2 0 270 1 98.54
    ZSU-234 0 0 0 0 0 3 1 1 0 269 98.18
    平均正确识别率(%) 98.14
    下载: 导出CSV

    表  4  基于不同方法的实验结果对比

    Table  4.   The comparison of experimental results based on different methods

    目标型号 识别率(%)
    FCNN+ICAE CNN+CAE FCNN CNN
    2S1 96.72 95.99 94.16 96.72
    BMP-2 97.95 97.44 96.41 94.36
    BRDM-2 98.54 95.99 96.35 95.26
    BTR-60 95.38 91.79 95.38 96.41
    BTR-70 98.47 99.49 98.98 93.88
    D7 99.27 96.35 98.54 97.81
    T-62 98.90 97.07 90.84 93.41
    T-72 98.98 98.98 98.47 97.96
    ZIL-131 98.54 98.91 97.81 96.35
    ZSU-234 98.18 98.91 99.64 94.89
    平均正确识别率(%) 98.14 97.11 96.58 95.71
    下载: 导出CSV
  • [1] Wagner S A. SAR ATR by a combination of convolutional neural network and support vector machines[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2861–2872. DOI: 10.1109/TAES.2016.160061
    [2] Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. DOI: 10.1109/TGRS.2016.2551720
    [3] Zhang Z M, Wang H P, Xu F, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188. DOI: 10.1109/TGRS.2017.2743222
    [4] Furukawa H. Deep learning for target classification from SAR imagery: Data augmentation and translation invariance[J]. IEICE Technical Report, 2017, 117(182): 13–17.
    [5] 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. DOI: 10.12000/JR16130

    Xu Feng, Wang Haipeng, and Jin Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. DOI: 10.12000/JR16130
    [6] Morgan D A E. Deep convolutional neural networks for ATR from SAR imagery[C]. Proceedings of SPIE 9475, Algorithms for Synthetic Aperture Radar Imagery XXII, Baltimore, Maryland, United States, 2015: 94750F.
    [7] Profeta A, Rodriguez A, and Clouse H S. Convolutional neural networks for synthetic aperture radar classification[C]. Proceedings of SPIE 9843, Algorithms for Synthetic Aperture Radar Imagery XXIII, Baltimore, Maryland, United States, 2016: 98430M.
    [8] Wilmanski M, Kreucher C, and Lauer J. Modern approaches in deep learning for SAR ATR[C]. Proceedings of SPIE 9843, Algorithms for Synthetic Aperture Radar Imagery XXIII, Baltimore, Maryland, United States, 2016: 98430N.
    [9] Wagner S. Combination of convolutional feature extraction and support vector machines for radar ATR[C]. Proceedings of the 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–6.
    [10] Pei J F, Huang Y L, Huo W B, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196–2210. DOI: 10.1109/TGRS.2017.2776357
    [11] Lin Z, Ji K F, Kang M, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091–1095. DOI: 10.1109/LGRS.2017.2698213
    [12] Chen S Z and Wang H P. SAR target recognition based on deep learning[C]. Proceedings of 2014 International Conference on Data Science and Advanced Analytics, Shanghai, China, 2015: 541–547.
    [13] El Housseini A, Toumi A, and Khenchaf A. Deep learning for target recognition from SAR images[C]. Proceedings of 2017 Seminar on Detection Systems Architectures and Technologies, Algiers, Algeria, 2017: 1–5.
    [14] 田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. DOI: 10.12000/JR16037

    Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. DOI: 10.12000/JR16037
    [15] Springenberg J T, Dosovitskiy A, Brox T, et al.. Striving for simplicity: The all convolutional net[OL]. arXiv preprint arXiv:1412.6806, 2015.
    [16] Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. DOI: 10.1126/science.1127647
    [17] 康妙, 计科峰, 冷祥光, 等. 基于栈式自编码器特征融合的SAR图像车辆目标识别[J]. 雷达学报, 2017, 6(2): 167–176. DOI: 10.12000/JR16112

    Kang Miao, Ji Kefeng, Leng Xiangguang, et al. SAR target recognition with feature fusion based on stacked autoencoder[J]. Journal of Radars, 2017, 6(2): 167–176. DOI: 10.12000/JR16112
    [18] 赵飞翔, 刘永祥, 霍凯. 基于栈式降噪稀疏自动编码器的雷达目标识别方法[J]. 雷达学报, 2017, 6(2): 149–156. DOI: 10.12000/JR16151

    Zhao Feixiang, Liu Yongxiang, and Huo Kai. Radar target recognition based on stacked denoising sparse autoencoder[J]. Journal of Radars, 2017, 6(2): 149–156. DOI: 10.12000/JR16151
    [19] Masci J, Meier U, Cireşan D, et al.. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. Proceedings of the 21st International Conference on Artificial Neural Networks on Artificial Neural Networks and Machine Learning – ICANN 2011, Espoo, Finland, 2011: 52–59.
    [20] Vincent P, Larochelle H, Bengio Y, et al.. Extracting and composing robust features with denoising autoencoders[C]. Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 2008: 1096–1103.
    [21] Rumelhart D E, Hinton G E, and Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533–536. DOI: 10.1038/323533a0
    [22] Klambauer G, Unterthiner T, Mayr A, et al.. Self-normalizing neural networks[C]. Proceedings of the 31st Neural Information Processing Systems, Long Beach, CA, United States, 2017: 972–981.
    [23] Kingma D P and Ba J L. Adam: A method for stochastic optimization[OL]. arXiv preprint arXiv:1412.6980, 2015.
    [24] Dong G G, Wang N, and Kuang G Y. Sparse representation of monogenic signal: With application to target recognition in SAR images[J]. IEEE Signal Processing Letters, 2014, 21(8): 952–956. DOI: 10.1109/LSP.2014.2321565
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  3016
  • HTML全文浏览量:  1091
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-31
  • 修回日期:  2018-10-20
  • 网络出版日期:  2018-10-28

目录

    /

    返回文章
    返回