基于RID序列的微动目标高分辨三维成像方法

惠叶 白雪茹

惠叶, 白雪茹. 基于RID序列的微动目标高分辨三维成像方法[J]. 雷达学报, 2018, 7(5): 548-556. doi: 10.12000/JR18056
引用本文: 惠叶, 白雪茹. 基于RID序列的微动目标高分辨三维成像方法[J]. 雷达学报, 2018, 7(5): 548-556. doi: 10.12000/JR18056
Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056
Citation: Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056

基于RID序列的微动目标高分辨三维成像方法

DOI: 10.12000/JR18056
基金项目: 国家自然科学基金(61631019,61522114)
详细信息
    作者简介:

    惠 叶(1994–),女,陕西西安人,2016年于西安电子科技大学获探测制导与控制技术专业工学学士学位,现攻读西安电子科技大学信号与信息处理专业博士学位。主要研究方向为雷达目标成像、雷达目标识别等。E-mail: xyyeah1994@126.com

    白雪茹(1984–),女,河北内邱人,2011年获西安电子科技大学工学博士学位,现为雷达信号处理国家级重点实验室教授、博导。主要研究方向为新体制雷达成像、基于高分辨图像的目标特征提取与识别等。E-mail: xrbai@xidian.edu.cn

    通讯作者:

    白雪茹   xrbai@xidian.edu.cn

RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets

Funds: The National Natural Science Foundation of China (61631019, 61522114)
  • 摘要: 微动是指目标或目标上某些部件沿雷达视线方向的小幅、非匀速运动。通过对微动目标进行逆合成孔径雷达(ISAR)高分辨3维成像,能够获得其结构和运动信息,从而为微动目标检测、跟踪、分类与识别提供重要依据,并在空间态势感知与防空反导中发挥着重要作用。由于微动目标运动形式复杂、回波非平稳性强,现有的参数化ISAR成像方法已经不再适用。针对该问题,该文提出基于散射中心航迹矩阵分解的微动目标高分辨3维成像方法。该方法首先生成距离-瞬时多普勒(RID)像序列,利用watershed图像分割方法提取RID像的散射中心支撑域,并基于最小欧氏距离准则实现航迹关联。然后,针对散射中心航迹关联时瞬时斜距估计精度受距离分辨率影响等问题,进一步提出基于现代谱估计的散射中心航迹矩阵精估计方法。最后,通过带约束的航迹矩阵分解实现微动目标的高分辨3维成像。仿真结果表明,该文所提的成像方法能够有效实现章动等复杂微动目标的高分辨3维成像。

     

  • 图  1  RID像生成过程示意图

    Figure  1.  The process of RID image series generation

    图  2  基于航迹矩阵分解的微动目标高分辨成像算法流程图

    Figure  2.  The flow chart for high-resolution imaging of micro-motion targets based on trajectory matrix decomposition

    图  4  章动目标3维成像结果

    Figure  4.  3D image of the nutation target

    图  5  均方根误差随信噪比的变化曲线

    Figure  5.  Variation of the RMSE with SNR

  • [1] Chen V C, Li F Y, Ho S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. DOI: 10.1109/TAES.2006.1603402
    [2] Chen V C. The Micro-Doppler Effect in Radar[M]. Boston: Artech House, 2011.
    [3] Brown W M and Fredricks R J. Range-Doppler imaging with motion through resolution cells[J]. IEEE Transactions on Aerospace and Electronic Systems, 1969, AES-5(1): 98–102. DOI: 10.1109/TAES.1969.309826
    [4] Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995.
    [5] 张翼, 朱玉鹏, 黎湘. 基于微多普勒特征的目标微动参数估计[J]. 信号处理, 2009, 25(7): 1120–1124. DOI: 10.3969/j.issn.1003-0530.2009.07.022

    Zhang Yi, Zhu Yu-peng, and Li Xiang. Micro-motion parameter estimation of ballistic missile target based on micro-Doppler feature[J]. Signal Processing, 2009, 25(7): 1120–1124. DOI: 10.3969/j.issn.1003-0530.2009.07.022
    [6] Wang T, Wang X S, Chang Y L, et al. Estimation of precession parameters and generation of ISAR images of ballistic missile targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1983–1995. DOI: 10.1109/TAES.2010.5595608
    [7] Luo Y, Zhang Q, Qiu C W, et al. Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2087–2098. DOI: 10.1109/TGRS.2009.2034367
    [8] 邹小海, 艾小锋, 李永祯, 等. 基于微多普勒的圆锥弹头进动与结构参数估计[J]. 电子与信息学报, 2011, 33(10): 2413–2419. DOI: 10.3724/SP.J.1146.2011.00120

    Zou Xiao-hai, Ai Xiao-feng, Li Yong-zhen, et al. Precession and structural parameter estimation of the cone-shaped warhead based on the micro-Doppler[J]. Journal of Electronics&Information Technology, 2011, 33(10): 2413–2419. DOI: 10.3724/SP.J.1146.2011.00120
    [9] Luo Y, Zhang Q, Yuan N, et al. Three-dimensional precession feature extraction of space targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1313–1329. DOI: 10.1109/TAES.2014.110545
    [10] Zhang Q, Yeo T S, Tan H S, et al. Imaging of a moving target with rotating parts based on the Hough transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 291–299. DOI: 10.1109/TGRS.2007.907105
    [11] Gao H W, Xie L G, Wen S L, et al. Micro-Doppler signature extraction from ballistic target with micro-motions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1969–1982. DOI: 10.1109/TAES.2010.5595607
    [12] Bai X R and Bao Z. High-resolution 3D imaging of precession cone-shaped targets[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(8): 4209–4219. DOI: 10.1109/TAP.2014.2329004
    [13] Bai X R and Bao Z. Imaging of rotation-symmetric space targets based on electromagnetic modeling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1680–1689. DOI: 10.1109/TAES.2014.120772
    [14] Bai X R and Bao Z. High-resolution radar imaging of aerospace targets with micromotion[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 2014: 934–937. DOI: 10.1109/IGARSS.2014.6946579.
    [15] Chen V C and Ling H. Time-Frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston, MA, USA: Artech House, 2002.
    [16] Tomasi C and Kanade T. Shape and motion from image streams under orthography: A factorization method[J]. International Journal of Computer Vision, 1992, 9(2): 137–154. DOI: 10.1007/BF00129684
    [17] Bai X R, Zhou F, and Bao Z. High-resolution radar imaging of space targets based on HRRP series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2369–2381. DOI: 10.1109/TGRS.2013.2260342
    [18] Chen V C and Qian S. Joint time-frequency transform for radar range-Doppler imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 486–499. DOI: 10.1109/7.670330
    [19] Chen V C. Adaptive time-frequency ISAR processing[C]. Proceedings Volume 2845, Radar Processing, Technology, and Applications, Denver, CO, United States, 1996. DOI: 10.1117/12.257216.
    [20] Chen V C. Radar detection of multiple moving targets in clutter using time-frequency radon transform[C]. Proceedings Volume 4728, Signal and Data Processing of Small Targets 2002, Orlando, FL, United States, 2002. DOI: 10.1117/12.478534.
    [21] Bai X R, Zhou F, and Bao Z. High-resolution three-dimensional imaging of space targets in micromotion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3428–3440. DOI: 10.1109/JSTARS.2015.2431119
    [22] Wang Q, Xing M D, Lu G Y, et al. SRMF-CLEAN imaging algorithm for space debris[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3524–3533. DOI: 10.1109/TAP.2007.910343
    [23] Wang Q, Xing M D, Lu G Y, et al. High-resolution three-dimensional radar imaging for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 22–30. DOI: 10.1109/TGRS.2007.909086
    [24] Bai X R, Xing M D, Zhou F, et al. High-resolution three-dimensional imaging of spinning space debris[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 2352–2362. DOI: 10.1109/TGRS.2008.2010854
    [25] Chen V C. Reconstruction of inverse synthetic aperture radar image using adaptive time-frequency wavelet transform[C]. Proceedings Volume 2491, Wavelet Applications II, Orlando, FL, United States, 1995, DOI: 10.1117/12.205404.
    [26] Ferrara M, Arnold G, and Stuff M. Shape and motion reconstruction from 3D-to-1D orthographically projected data via object-image relations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(10): 1906–1912. DOI: 10.1109/TPAMI.2008.294
    [27] Mayhan J T, Burrows M L, Cuomo K M, et al. High resolution 3D " Snapshot” ISAR imaging and feature extraction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630–642. DOI: 10.1109/7.937474
    [28] Burrows M L. Two-dimensional ESPRIT with tracking for radar imaging and feature extraction[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(2): 524–532. DOI: 10.1109/TAP.2003.822411
    [29] Grewal M S and Andrews A P. Kalman Filtering, Theory and Practice Using MATLAB[M]. New York, USA: Wiley, 2001.
    [30] Allen J. Short term spectral analysis, synthesis, and modification by discrete Fourier transform[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1977, 25(3): 235–238. DOI: 10.1109/TASSP.1977.1162950
    [31] Vincent L and Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583–598. DOI: 10.1109/34.87344
    [32] Stoica P and Moses R L. Spectral Analysis of Signals[M]. Upper Saddle River, NJ: Prentice Hall, 2005.
    [33] Liu H C, Jiu B, Liu H W, et al. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005–5013. DOI: 10.1109/TGRS.2013.2286402
    [34] Li H T, Wang C Y, Wang K, et al. High resolution range profile of compressive sensing radar with low computational complexity[J]. IET Radar,Sonar&Navigation, 2015, 9(8): 984–990. DOI: 10.1049/iet-rsn.2014.0454
  • 加载中
图(5)
计量
  • 文章访问数:  2639
  • HTML全文浏览量:  987
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-23
  • 修回日期:  2018-10-22
  • 网络出版日期:  2018-10-28

目录

    /

    返回文章
    返回