大气层效应对地球同步轨道SAR系统性能影响研究

胡程 董锡超 李元昊

胡程, 董锡超, 李元昊. 大气层效应对地球同步轨道SAR系统性能影响研究[J]. 雷达学报, 2018, 7(4): 412-424. doi: 10.12000/JR18032
引用本文: 胡程, 董锡超, 李元昊. 大气层效应对地球同步轨道SAR系统性能影响研究[J]. 雷达学报, 2018, 7(4): 412-424. doi: 10.12000/JR18032
Hu Cheng, Dong Xichao, Li Yuanhao. Atmospheric Effects on the Performance of Geosynchronous Orbit SAR Systems[J]. Journal of Radars, 2018, 7(4): 412-424. doi: 10.12000/JR18032
Citation: Hu Cheng, Dong Xichao, Li Yuanhao. Atmospheric Effects on the Performance of Geosynchronous Orbit SAR Systems[J]. Journal of Radars, 2018, 7(4): 412-424. doi: 10.12000/JR18032

大气层效应对地球同步轨道SAR系统性能影响研究

DOI: 10.12000/JR18032
基金项目: 国家自然科学基金(61471038,61501032),北京市自然科学基金(4162052)
详细信息
    作者简介:

    胡 程(1981–),男,博士,教授,博士生导师,北京理工大学雷达技术研究所副所长。长期从事新体制合成孔径雷达系统与信号处理、生物探测雷达系统与信息处理技术方向的科学研究;发表SCI论文50余篇、EI论文100余篇,授权发明专利30余项。入选国家“万人计划”青年拔尖人才;是英国工程技术学会会士(IET Fellow)、中国电子学会会士;担任中国电子学会青年科学家俱乐部副主席及雷达与信号处理系统专委会主任委员、IET 2018国际雷达会议大会主席

    董锡超(1986–),男,特别副研究员,硕士生导师。2008年6月获得北京理工大学信息工程专业学士学位,2014年6月获得北京理工大学目标探测与识别专业工学博士学位,期间赴英国谢菲尔德大学应用数学系进行为期2年的访问研究。2014年到2017年,在北京理工大学开展博士后研究,2017年4月留北京理工大学信息与电子学院任教,主要研究方向为新体制SAR系统分析与成像、SAR运动目标检测、电离层影响机理分析。主持国家自然科学基金青年项目、国防科技基金等科研项目,发表SCI论文10余篇,EI论文20余篇

    李元昊(1990–),男,博士。2018年3月获得北京理工大学信号与信息处理专业工学博士学位,期间赴意大利米兰理工大学进行为期1年的访问研究。主要研究方向为地球同步轨道合成孔径雷达技术、干涉和差分干涉信号处理、电离层影响分析和无线电频率干扰研究,发表学术论文30余篇,包括SCI刊源10余篇。获得2012年和2018年北京市优秀毕业生荣誉称号

    通讯作者:

    胡程   cchchb@163.com

Atmospheric Effects on the Performance of Geosynchronous Orbit SAR Systems

Funds: The National Natural Science Foundation of China (61471038, 61501032), The Natural Science Foundation of Beijing (4162052)
  • 摘要: 地球同步轨道合成孔径雷达(GEO SAR)合成孔径时间长、观测范围大,易受到大气层效应时空变化的影响,使成像的聚焦质量和差分干涉处理精度严重下降。该文针对常规对流层和背景电离层等大气层缓变的干扰部分,建立了高精度时频混合GEO SAR信号模型,分析了不同大气层参数的时间变化率对成像质量和差分干涉处理精度的影响。针对大气层干扰中对流层湍流和电离层闪烁等随机扰动造成的影响,基于幂律功率谱模型,建立了大气扰动参数和成像质量的定量化分析模型,获得了大气层随机干扰的强度与成像评估指标间的关系。最后,通过仿真验证了模型的有效性,并分析了长孔径时间内缓变和随机扰动的大气层误差对成像和差分干涉处理质量的影响,仿真结果表明:L波段GEO SAR成像和差分干涉处理受时空变电离层干扰的影响十分严重,必须予以补偿;对流层干扰对其影响较小,仅当积累时间达到数百秒时才需要考虑它对成像性能的恶化。

     

  • 图  1  GEO SAR星下点轨迹及覆盖区域

    Figure  1.  The sub-satellite track and coverage area of GEO SAR

    图  2  基于大气折射率廓线数据获得的对流层信号延迟

    Figure  2.  Tropospheric signal delays based on atmospheric refractive index profile data

    图  3  不同波段、不同积累时间下对流层对GEO SAR成像影响的评估结果

    Figure  3.  Results of tropospheric GEO SAR imaging at different wave bands and different integrate times

    图  4  100 s下 L波段方位向包络图

    Figure  4.  L-band azimuth envelope at 100 s

    图  5  点阵目标成像结果

    Figure  5.  Lattice targets imaging results

    图  6  电离层闪烁影响下成像指标参数分析

    Figure  6.  Analysis of imaging quality parameters in the presence of ionospheric scintillation

    图  7  时空变电离层引入的干涉相位屏误差和评估

    Figure  7.  The interference phase screen errors and evaluation introduced by TSV ionosphere

    表  1  GEO SAR对流层延迟的各阶时间变化情况

    Table  1.   Temporal variability of each order of GEO SAR tropospheric delay

    项目 数值
    $\Delta \,{r_0}$ (m) 2.21
    ${q_1}$ (m/s) 2.52×10–4
    ${q_2}$ (m/s2) 2.71×10–7
    ${q_3}$ (m/s3) 1.64×10–13
    下载: 导出CSV

    表  2  电离层TEC随时间变化情况

    Table  2.   Rate of ionospheric TEC changing with time

    项目 数值
    TEC0(TECU) 68.3
    k1 (TECU/s) 0.0068
    k2 (TECU/s2) 7.32×10–6
    k3 (TECU/s3) 4.42×10–12
    下载: 导出CSV

    表  3  背景电离层对GEO SAR成像影响评估结果

    Table  3.   Results of GEO SAR imaging effected by background ionosphere

    合成孔径时间(s) 距离向PSLR (dB) 方位向PSLR (dB) 方位向移位(m)
    100 –13.23 –13.21 4.3
    300 –13.25 –12.11 4.3
    500 –13.22 –10.39 4.3
    下载: 导出CSV
  • [1] Tomiyasu K. Synthetic aperture radar in geosynchronous orbit[C]. Proceedings of 1978 Antennas and Propagation Society International Symposium, Washington, DC, USA, 1978: 42–45
    [2] Tomiyasu K and Pacelli J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(3): 324–329. DOI: 10.1109/TGRS.1983.350561
    [3] NASA and JPL. Global earthquake satellite system: A 20-year plan to enable earthquake prediction[EB/OL]. http://solidearth.jpl.nasa.gov/GESS/3123_GESS_Rep_2003.pdf, 2015, 9
    [4] Edelstein W N, Madsen S N, Moussessian A, et al.. Concepts and technologies for synthetic aperture radar from MEO and geosynchronous orbits[C]. Proceedings of SPIE 5659, Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, Honolulu, Hawaii, 2005: 195–203
    [5] Laurence Gray A, Mattar K E, and Sofko G. Influence of ionospheric electron density fluctuations on satellite radar interferometry[J]. Geophysical Research Letters, 2000, 27(10): 1451–1454. DOI: 10.1029/2000GL000016
    [6] Meyer F, Bamler R, Jakowski N, et al. The potential of low-frequency SAR systems for mapping ionospheric TEC distributions[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 560–564. DOI: 10.1109/LGRS.2006.882148
    [7] Meyer F J and Nicoll J. The impact of the ionosphere on interferometric SAR processing[C]. Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 2008: II-391–II-394
    [8] Meyer F J. Performance requirements for ionospheric correction of low-frequency SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3694–3702. DOI: 10.1109/TGRS.2011.2146786
    [9] Sun J P, Bi Y K, Wang Y P, et al.. High resolution SAR performance limitation by the change of tropospheric refractivity[C]. Proceedings of 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011
    [10] Zhang F, Li G J, Li W, et al. Multiband microwave imaging analysis of ionosphere and troposphere refraction for spaceborne SAR[J]. International Journal of Antennas and Propagation, 2014, 2014: 913056.
    [11] Hanssen R F. Radar Interferometry: Data Interpretation and Error Analysis[M]. Dordrecht: Kluwer Academic Publishers, 2001
    [12] Danklmayer A, Doring B J, Schwerdt M, et al. Assessment of atmospheric propagation effects in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3507–3518. DOI: 10.1109/TGRS.2009.2022271
    [13] Hobbs S, Mitchell C, Forte B, et al. System design for geosynchronous synthetic aperture radar missions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7750–7763. DOI: 10.1109/TGRS.2014.2318171
    [14] Bruno D and Hobbs S E. Radar imaging from geosynchronous orbit: Temporal decorrelation aspects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2924–2929. DOI: 10.1109/TGRS.2010.2042062
    [15] Bruno D, Hobbs S E, and Ottavianelli G. Geosynchronous synthetic aperture radar: Concept design, properties and possible applications[J]. Acta Astronautica, 2006, 59(1–5): 149–156. DOI: 10.1016/j.actaastro.2006.02.005
    [16] Ruiz Rodon J, Broquetas A, Guarnieri A M, et al. Geosynchronous SAR focusing with atmospheric phase screen retrieval and compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4397–4404. DOI: 10.1109/TGRS.2013.2242202
    [17] Ruiz-Rodon J, Broquetas A, Makhoul E, et al. Nearly zero inclination geosynchronous SAR mission analysis with long integration time for earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6379–6391. DOI: 10.1109/TGRS.2013.2296357
    [18] Guarnieri A M, Rocca F, and Ibars A B. Impact of atmospheric water vapor on the design of a Ku band geosynchronous SAR system[C]. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009
    [19] Guarnieri A M, Tebaldini S, Rocca F, et al.. GEMINI: Geosynchronous SAR for earth monitoring by interferometry and imaging[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012
    [20] Monti Guarnieri A, Broquetas A, Recchia A, et al. Advanced radar geosynchronous observation system: ARGOS[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1406–1410. DOI: 10.1109/LGRS.2015.2404214
    [21] Monti Guarnieri A, Leanza A, Recchia A, et al. Atmospheric phase screen in GEO-SAR: Estimation and compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1668–1679. DOI: 10.1109/TGRS.2017.2766084
    [22] Hu C, Long T, Zeng T, et al. The accurate focusing and resolution analysis method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3548–3563. DOI: 10.1109/TGRS.2011.2160402
    [23] Hu C, Tian Y, Yang X P, et al. Background ionosphere effects on geosynchronous SAR focusing: Theoretical analysis and verification based on the BeiDou Navigation Satellite System (BDS)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1143–1162. DOI: 10.1109/JSTARS.2015.2475283
    [24] Dong X C, Hu C, Tian Y, et al. Experimental study of ionospheric impacts on geosynchronous SAR using GPS signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2171–2183. DOI: 10.1109/JSTARS.2016.2537401
    [25] Tian Y, Hu C, Dong X C, et al.. Analysis of effects of time variant troposphere on geosynchronous SAR imaging[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 5051–5054
    [26] 田野, 董锡超, 胡程. 对流层对地球同步轨道SAR成像的影响研究[J]. 信号处理, 2015, 31(12): 1562–1567. DOI: 10.3969/j.issn.1003-0530.2015.12.003

    Tian Ye, Dong Xi-chao, and Hu Cheng. Analysis of troposphere impacts on geosynchronous SAR imaging[J]. Journal of Signal Processing, 2015, 31(12): 1562–1567. DOI: 10.3969/j.issn.1003-0530.2015.12.003
    [27] Tian Y, Hu C, Dong X C, et al. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 721–725. DOI: 10.1109/LGRS.2014.2360235
    [28] Wang R, et al. Joint amplitude-phase compensation for ionospheric scintillation in GEO SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3454–3465.
    [29] Hu C, Li Y H, Dong X C, et al. Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 3454–3465. DOI: 10.1109/TGRS.2016.2602939
    [30] Li Y H, Hu C, Dong X C, et al. Impacts of ionospheric scintillation on geosynchronous SAR focusing: Preliminary experiments and analysis[J]. Science China Information Sciences, 2015, 58(10): 1–3.
    [31] Hu C, Li Y H, Dong X C, et al. Impacts of temporal-spatial variant background ionosphere on repeat-track GEO D-InSAR system[J]. Remote Sensing, 2016, 8(11): 916. DOI: 10.3390/rs8110916
    [32] Kou L L, Wang X Q, Xiang M S, et al. Effect of orbital errors on the geosynchronous circular synthetic aperture radar imaging and interferometric processing[J]. Journal of Zhejiang University Science C, 2011, 12(5): 404–416. DOI: 10.1631/jzus.C1000170
    [33] Kou L L, Xiang M S, Wang X Q, et al. Tropospheric effects on L-band geosynchronous circular SAR imaging[J]. IET Radar,Sonar&Navigation, 2013, 7(6): 693–701.
    [34] Ji Y F, Zhang Q L, Zhang Y S, et al. L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities[J]. Science China Information Sciences, 2017, 60(6): 060308. DOI: 10.1007/s11432-016-9064-1
    [35] Li D X, Rodriguez-Cassola M, Prats-Iraola P, et al. Modelling of tropospheric delays in geosynchronous synthetic aperture radar[J]. Science China Information Sciences, 2017, 60(6): 060307. DOI: 10.1007/s11432-016-9065-1
    [36] Tofsted D H. Turbulence simulation: Outer scale effects on the refractive index spectrum[R]. Technical Report ARL-TR-548. US Army Research Lab. NM, 2000
    [37] Von Kármán T. Progress in the statistical theory of turbulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 1948, 34(11): 530–539. DOI: 10.1073/pnas.34.11.530
    [38] Tunick A D. The Refractive Index Structure Parameter/Atmospheric Optical Turbulence Model: CN2[M]. U.S. Adelphi: A.R. Laboratory, 1998
    [39] Liu Z P, Hu C, Zeng T, et al. Improved secondary range compression focusing method in GEO SAR[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011: 1373–1376
    [40] Long T, Hu C, Ding Z, et al.. Geosynchronous SAR: System and Signal Processing[M]. Singapore: Springer, 2018
    [41] Zhang D D, Chen Z Y, Dong X C, et al.. Simulating the impacts of ionospheric scintillation on geosynchronous SAR[C]. Proceedings of the 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  4116
  • HTML全文浏览量:  917
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-12
  • 修回日期:  2018-07-13
  • 网络出版日期:  2018-08-28

目录

    /

    返回文章
    返回