基于分数阶傅里叶变换的多辐射源被动直接定位算法

陈芳香 易伟 周涛 孔令讲

陈芳香, 易伟, 周涛, 孔令讲. 基于分数阶傅里叶变换的多辐射源被动直接定位算法[J]. 雷达学报, 2018, 7(4): 523-530. doi: 10.12000/JR18027
引用本文: 陈芳香, 易伟, 周涛, 孔令讲. 基于分数阶傅里叶变换的多辐射源被动直接定位算法[J]. 雷达学报, 2018, 7(4): 523-530. doi: 10.12000/JR18027
Chen Fangxiang, Yi Wei, Zhou Tao, Kong Lingjiang. Passive Direct Location Determination for Multiple Sources Based on FRFT[J]. Journal of Radars, 2018, 7(4): 523-530. doi: 10.12000/JR18027
Citation: Chen Fangxiang, Yi Wei, Zhou Tao, Kong Lingjiang. Passive Direct Location Determination for Multiple Sources Based on FRFT[J]. Journal of Radars, 2018, 7(4): 523-530. doi: 10.12000/JR18027

基于分数阶傅里叶变换的多辐射源被动直接定位算法

DOI: 10.12000/JR18027
基金项目: 国家自然科学基金(61771110),长江学者奖励计划,111项目(B17008),中央高校基本科研基金(ZYGX2016J031),中国博士后科学基金面上基金(2014M550465)和特别资助基金(2016T90845)
详细信息
    作者简介:

    陈芳香(1993–),女,江西永新人。现为电子科技大学信息与通信工程学院硕士研究生。研究方向为雷达信号处理及目标定位。E-mail: chenfangxiang25@163.com

    易 伟(1983–),男,四川雅安人。现为电子科技大学副教授。研究方向为雷达信号处理、微弱目标探测技术、雷达及视频图像目标跟踪、多传感器数据融合、多传感器资源智能管控等。E-mail: kussoyi@gmail.com

    周 涛(1991–),男,湖北孝感人。现为电子科技大学信息与通信工程学院博士研究生。研究方向为雷达信号处理、雷达目标检测、定位算法及阵列信号处理。E-mail: tozhoutao@163.com

    孔令讲(1974–),男,河南南阳人。现为电子科技大学教授,博士生导师,长江学者特聘教授。研究方向为宽带雷达系统技术、雷达系统探测技术、相控阵激光雷达技术。E-mail: lingjiang.kong@gmail.com

    通讯作者:

    易伟   kussoyi@gmail.com

Passive Direct Location Determination for Multiple Sources Based on FRFT

Funds: The National Natural Science Foundation of China (61771110), The Chang Jiang Scholars Program, The 111 Project (B17008), The Fundamental Research Funds of Central Universities (ZYGX2016J031), The Chinese Postdoctoral Science Foundation (2014M550465), Special Grant (2016T90845)
  • 摘要: 直接定位(DPD)算法能充分利用观测回波信息,在低信噪比条件下其定位精度一般要高于传统的两步定位算法。为解决多基站无源雷达系统中多个未知线性调频(LFM)信号辐射源的定位问题,该文提出一种基于DPD算法和分数傅里叶变换(FRFT)相结合的多目标定位算法。首先,根据建立的信号模型推导了理论上最优的高维最大似然估计器;其次,由于高维信号参数和目标位置联合估计的计算复杂度限制,利用基于FRFT和基本分类算法的降维策略将多目标定位问题转化为多个单目标定位问题;最后,目标的位置及相应信号参数可通过4维网格搜索得到有效估计。仿真结果表明,相比于已存在的忽略发射信号的DPD算法,该文提出算法定位性能更优。

     

  • 图  1  2维定位场景示意图

    Figure  1.  Two-dimensional scenario for location determination

    图  2  定位算法流程图

    Figure  2.  Flow chart for location determination algorithm

    图  3  仿真场景示意图

    Figure  3.  Simulation scenario

    图  4  接收信号的FRFT功率谱3维分布图

    Figure  4.  Three-dimensional FRFT power spectrum for received signal

    图  5  目标数量估计与SNR关系

    Figure  5.  Relation between source number and SNR

    图  6  4种算法定位误差对比

    Figure  6.  RMSE comparison for four algorithms

    图  7  目标信号参数的CRE

    Figure  7.  CRE for signal parameters

    表  1  信号参数设置

    Table  1.   Signal parameter setting

    目标信号 信号长度Tp
    (μs)
    初始频率f0
    (MHz)
    调频斜率k
    (MHz/μs)
    目标1信号 20 2 0.10
    目标2信号 25 6 –0.05
    目标3信号 30 5 0.25
    下载: 导出CSV
  • [1] Amar A and Weiss A J. Localization of narrowband radio emitters based on Doppler frequency shifts[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5500–5508. DOI: 10.1109/TSP.2008.929655
    [2] 贾兴江. 运动多站无源定位关键技术研究[D]. [博士论文], 国防科学技术大学, 2011: 3–42

    Jia Xing-jiang. Research on passive location technologies of multiple moving observers[D]. [Ph.D. dissertation], National University of Defense Technology, 2011: 3–42
    [3] Tirer T and Weiss A J. High resolution localization of narrowband radio emitters based on Doppler frequency shifts[J]. Signal Processing, 2017, 141: 288–298. DOI: 10.1016/j.sigpro.2017.06.019
    [4] 赵勇胜, 赵拥军, 赵闯. 联合角度和时差的单站无源相干定位加权最小二乘算法[J]. 雷达学报, 2016, 5(3): 302–311. DOI: 10.12000/JR15133

    Zhao Yong-sheng, Zhao Yong-jun, and Zhao Chuang. Weighted least squares algorithm for single-observer passive coherent location using DOA and TDOA measurements[J]. Journal of Radars, 2016, 5(3): 302–311. DOI: 10.12000/JR15133
    [5] Weiss A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5): 513–516. DOI: 10.1109/LSP.2004.826501
    [6] Yi W, Chen Z H, Hoseinnezhad R, et al. Joint estimation of location and signal parameters for an LFM emitter[J]. Signal Processing, 2017, 134: 100–112. DOI: 10.1016/j.sigpro.2016.11.014
    [7] Oispuu M and Nickel U. Direct detection and position determination of multiple sources with intermittent emission[J]. Signal Processing, 2010, 90(12): 3056–3064. DOI: 10.1016/j.sigpro.2010.05.010
    [8] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 1996, 44(9): 2141–2150. DOI: 10.1109/78.536672
    [9] Saxena R and Singh K. Fractional Fourier transform: A novel tool for signal processing[J]. Journal of the Indian Institute of Science, 2005, 85(1): 11–26.
    [10] Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics, 1980, 25(3): 241–265. DOI: 10.1093/imamat/25.3.241
    [11] 田瑞琦, 鲍庆龙, 王丁禾, 等. 基于FRFT与Keystone变换的运动目标参数估计算法[J]. 雷达学报, 2014, 3(5): 511–517. DOI: 10.3724/SP.J.1300.2014.14058

    Tian Rui-qi, Bao Qing-long, Wang Ding-he, et al. An algorithm for target parameter estimation based on fractional Fourier and Keystone transforms[J]. Journal of Radars, 2014, 3(5): 511–517. DOI: 10.3724/SP.J.1300.2014.14058
    [12] Almeida L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084–3091. DOI: 10.1109/78.330368
    [13] 吴超楠. 基于分数阶傅里叶变换的高精度线性调频信号参数估计方法[D]. [硕士论文], 华南理工大学, 2014: 15–63

    Wu Chaonan. High-precision parameter estimation for LFM signal based on fractional Fourier transform[D]. [Master dissertation], South China University of Technology, 2014: 15–63
    [14] Schonhoff T A and Giordano A A. Detection and Estimation Theory and its Applications[M]. Upper Saddle River, NJ: Prentice Hall, 2006
    [15] 艾越. 分置MIMO雷达多目标信号级定位算法研究[D]. [硕士论文], 电子科技大学, 2015: 19–23

    Ai Yue. Research of MIMO radar with widely separated antennas signal level multi-target localization[D]. [Master dissertation], University of Electronic Science and Technology of China, 2015: 19–23
    [16] Schultz R R and Stevenson R L. A Bayesian approach to image expansion for improved definition[J]. IEEE Transactions on Image Processing, 1994, 3(3): 233–242. DOI: 10.1109/83.287017
    [17] Sneath P H A and Sokal R R. Numerical taxonomy: The principles and practice of numerical classification[J]. Taxon, 1963, 12(5): 190–199.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3023
  • HTML全文浏览量:  553
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-27
  • 修回日期:  2018-06-22
  • 网络出版日期:  2018-08-28

目录

    /

    返回文章
    返回