用于SAR与通信一体化系统的滤波器组多载波波形

朱柯弘 王杰 梁兴东 吴一戎

朱柯弘, 王杰, 梁兴东, 吴一戎. 用于SAR与通信一体化系统的滤波器组多载波波形[J]. 雷达学报, 2018, 7(5): 602-612. doi: 10.12000/JR18038
引用本文: 朱柯弘, 王杰, 梁兴东, 吴一戎. 用于SAR与通信一体化系统的滤波器组多载波波形[J]. 雷达学报, 2018, 7(5): 602-612. doi: 10.12000/JR18038
Zhu Kehong, Wang Jie, Liang Xingdong, Wu Yirong. Filter Bank Multicarrier Waveform Used for Integrated SAR and Communication Systems[J]. Journal of Radars, 2018, 7(5): 602-612. doi: 10.12000/JR18038
Citation: Zhu Kehong, Wang Jie, Liang Xingdong, Wu Yirong. Filter Bank Multicarrier Waveform Used for Integrated SAR and Communication Systems[J]. Journal of Radars, 2018, 7(5): 602-612. doi: 10.12000/JR18038

用于SAR与通信一体化系统的滤波器组多载波波形

DOI: 10.12000/JR18038
基金项目: 国家部委基金
详细信息
    作者简介:

    朱柯弘(1992–),男,重庆人;北京理工大学学士;中国科学院电子学研究所博士研究生;主要研究方向为SAR与通信一体化波形技术。E-mail: tyler523@163.com

    王杰:王   杰(1986–),男,博士,现为中国科学院电子学研究所传感技术联合国家重点实验室博士后,主要从事多输入多输出合成孔径雷达、多维统一信号、雷达通信一体化等领域的研究工作。E-mail: wangjie110_ucas@sina.com

    梁兴东(1973–),男,陕西人;北京理工大学博士;中国科学院电子学研究所研究员;研究方向为高分辨率合成孔径雷达系统、干涉合成孔径雷达、成像处理及应用、实时数字信号处理等。E-mail: xdliang@mail.ie.ac.cn

    吴一戎(1963–),男,安徽人;中国科学院电子学研究所博士;中国科学院院士,研究员,研究方向为微波成像理论、微波成像技术和雷达信号处理。E-mail: wyr@mail.ie.ac.cn

    通讯作者:

    梁兴东   xdliang@mail.ie.ac.cn

Filter Bank Multicarrier Waveform Used for Integrated SAR and Communication Systems

Funds: The National Ministries Foundation
  • 摘要: 合成孔径雷达(SAR)与通信一体化可提升SAR的信息交互能力,实现探测数据实时传输,提升系统整体性能。一体化平台在工作过程中,将引入多普勒偏移和多径效应,这使得广泛研究的正交频分复用(OFDM)一体化波形的正交性无法保持,成像与通信性能受限。该文提出利用滤波器组多载波(FBMC)波形实现SAR与通信一体化,一方面,FBMC波形对子载波间的正交性要求低,可以对抗多普勒与多径效应,另一方面,FBMC波形不采用循环前缀(CP),因此可以避免出现虚假目标,提升了频谱利用率。该文分析了FBMC波形的一体化性能,针对一体化系统中的多径效应与多普勒偏移对FBMC波形的影响展开了研究,并针对大频偏的情况提出了适用于FBMC一体化波形的多普勒补偿算法。基于FBMC的SAR与通信一体化波形在宽测绘带SAR与通信一体化系统中有更好的性能,仿真试验验证了该结论。

     

  • 图  1  SAR与通信一体化系统的几何模型

    Figure  1.  Geometric model of SAR and communication integration system

    图  2  OFDM与FBMC子载波频域对比

    Figure  2.  Subcarrier comparison between OFDM and FBMC

    图  3  OFDM平均模糊函数

    Figure  3.  OFDM average ambiguity function

    图  4  FBMC平均模糊函数

    Figure  4.  FBMC average ambiguity function

    图  5  多径效应对波形正交性的影响示意图

    Figure  5.  The multipath effect on the orthogonality of waveforms

    图  6  多径时延下的成像与通信性能对比

    Figure  6.  Comparison of imaging and communication performance under multipath delay

    图  7  多普勒频偏影响OFDM波形正交性的示意图

    Figure  7.  The Doppler effects on the orthogonality of waveforms

    图  8  归一化频偏下的误码率曲线

    Figure  8.  Bit error rate under normalized frequency shift

    图  9  多普勒频偏下的成像性能对比图

    Figure  9.  Imaging performance comparison under doppler shift

    图  10  FBMC波形多普勒补偿流程

    Figure  10.  FBMC waveform doppler compensation process

    图  11  一体化系统通信性能仿真结果

    Figure  11.  Integrated system communication performance simulation results

    图  13  点目标距离向切片分析

    Figure  13.  Point target range slice analysis

    图  14  一体化系统面目标成像性能仿真结果

    Figure  14.  Integrated system surface target imaging performance simulation results

    图  12  一体化系统点目标成像性能仿真结果

    Figure  12.  Integrated system point target imaging performance simulation results

    表  1  原型滤波器系数

    Table  1.   Prototype filter coefficients

    K H0 H1 H2 H3
    2 1 $\sqrt 2 /2$
    3 1 0.911438 0.411438
    4 1 0.971960 $\sqrt 2 /2$ 0.235147
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Simulation parameters

    参数 数值
    信号时宽(μs) 40
    信号带宽(MHz) 120
    采样频率(MHz) 200
    信号载频(GHz) 5.4
    平台速度(m/s) 6000
    多普勒带宽(Hz) 4000
    PRF (Hz) 5000
    信道信噪比(dB) 10
    测绘带宽(km) 6
    下载: 导出CSV

    表  3  点目标成像质量分析

    Table  3.   Point target imaging quality analysis

    对应图像 OFDM补偿前 FBMC补偿前 OFDM补偿后 FBMC补偿后
    PSLR (dB) 13.32 13.35 13.33 13.39
    ISLR (dB) 2.5498 9.0870 8.0321 9.6827
    下载: 导出CSV
  • [1] Sturm C and Wiesbeck W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J].Proceedings of the IEEE, 2011, 99(7): 1236–1259. DOI: 10.1109/JPROC.2011.2131110
    [2] Chiriyath A R, Paul B, and Bliss D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. DOI: 10.1109/TCCN.2017.2666266
    [3] Wang W Q, Zheng Z, and Zhang S S. OFDM chirp waveform diversity for co-designed radar-communication system[C]. Proceedings of the 18th International Radar Symposium, Prague, Czech Republic, 2017: 1–9. DOI: 10.23919/IRS.2017.8008139.
    [4] Sit Y L, Reichardt L, Sturm C, et al.. Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario[C]. Proceedings of 2011 IEEE Radar Conference, Kansas City, MO, USA, 2011: 718–723.
    [5] Braun M, Sturm C, Niethammer A, et al.. Parametrization of joint OFDM-based radar and communication systems for vehicular applications[C]. Proceedings of the 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 2009: 3020–3024.
    [6] Han L and Wu K. Multifunctional transceiver for future intelligent transportation systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1879–1892. DOI: 10.1109/TMTT.2011.2138156
    [7] Cumming I G and Wong F H. Synthetic Aperture Radar Imaging[M]. Publishing House of Electronics Industry, 2012.
    [8] 林茂庸, 柯有安. 雷达信号理论[M]. 北京: 国防工业出版社, 1984.

    Lin Mao-yong and Ke You-an. Radar Signal Theory[M]. Beijing: National Defense Industry Press, 1984.
    [9] 王杰, 梁兴东, 丁赤飚, 等. OFDM SAR多普勒补偿方法研究[J]. 电子与信息学报, 2013, 35(12): 3037–3040. DOI: 10.3724/SP.1146.2012.01547

    Wang Jie, Liang Xing-dong, Ding Chi-biao, et al. Investigation on the Doppler compensation in OFDM SAR[J]. Journal of Electronics&Information Technology, 2013, 35(12): 3037–3040. DOI: 10.3724/SP.1146.2012.01547
    [10] Schulze H and Luders C. Theory and Applications of OFDM and CDMA: Wideband Wireless Communications[M]. New York: Wiley, 2005: 1–10.
    [11] Lellouch G, Mishra A K, and Inggs M. Design of OFDM radar pulses using genetic algorithm based techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1953–1966. DOI: 10.1109/TAES.2016.140671
    [12] Franken G E A, Nikookar H, and Van Genderen P. Doppler tolerance of OFDM-coded radar signals[C]. Proceedings of 2006 European Radar Conference, Manchester, UK, 2006: 108–111.
    [13] Bellanger M. FBMC physical layer: A primer[C]. P7-ICT Project PHYDYAS, 2010.
    [14] Sexton C, Bodinier Q, Farhang A, et al.. Coexistence of OFDM and FBMC for underlay D2D communication in 5G networks[C]. Proceedings of 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 2016: 1–7. DOI: 10.1109/GLOCOMW.2016.7848863.
    [15] Lee T, Ahn Y, Sim D, et al.. QAM-FBMC system with a robust prototype filter in multipath fading channels[C]. Proceedings of the 18th IEEE International Symposium on Consumer Electronics, JeJu Island, South Korea, 2014: 1–2. DOI: 10.1109/ISCE.2014.6884502.
    [16] Cao W, Zhu J H, Li X T, et al. Feasibility of multi-carrier modulation signals as new illuminators of opportunity for passive radar: Orthogonal frequency division multiplexing versus filter-bank multi-carrier[J]. IET Radar,Sonar&Navigation, 2016, 10(6): 1080–1087. DOI: 10.1049/iet-rsn.2015.0414
    [17] Lim J, Kim S R, and Shin D J. Two-step Doppler estimation based on intercarrier interference mitigation for OFDM radar[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1726–1729. DOI: 10.1109/LAWP.2015.2421054
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  3557
  • HTML全文浏览量:  804
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-04
  • 修回日期:  2018-06-25
  • 网络出版日期:  2018-10-28

目录

    /

    返回文章
    返回