基于单频时变阈值的1-bit SAR成像方法研究

赵博 黄磊 周汉飞 张亮 李强 黄敏

赵博, 黄磊, 周汉飞, 张亮, 李强, 黄敏. 基于单频时变阈值的1-bit SAR成像方法研究[J]. 雷达学报, 2018, 7(4): 446-454. doi: 10.12000/JR18036
引用本文: 赵博, 黄磊, 周汉飞, 张亮, 李强, 黄敏. 基于单频时变阈值的1-bit SAR成像方法研究[J]. 雷达学报, 2018, 7(4): 446-454. doi: 10.12000/JR18036
Zhao Bo, Huang Lei, Zhou Hanfei, Zhang Liang, Li Qiang, Huang Min. 1-bit SAR Imaging Method Based on Single-frequency Time-varying Threshold[J]. Journal of Radars, 2018, 7(4): 446-454. doi: 10.12000/JR18036
Citation: Zhao Bo, Huang Lei, Zhou Hanfei, Zhang Liang, Li Qiang, Huang Min. 1-bit SAR Imaging Method Based on Single-frequency Time-varying Threshold[J]. Journal of Radars, 2018, 7(4): 446-454. doi: 10.12000/JR18036

基于单频时变阈值的1-bit SAR成像方法研究

DOI: 10.12000/JR18036
基金项目: 国家自然科学基金(U1713217,61501485,61501300,61601300,61601304),中国博士后科学基金(2015M582413,2017M610547),广东省自然科学基金(2015A030311030),深圳市基础研究项目(ZDSYS201507081625213,JCYJ20160520165659418,JCYJ20170302142545828,JCYJ20150324140036835),深圳大学科研启动项目(201557,2016057)
详细信息
    作者简介:

    赵 博(1986–),男,河南南阳人,博士,博士后。2015年在西安电子科技大学获得博士学位,现在深圳大学从事博士后研究工作。主要研究方向为雷达信号处理与电子对抗。E-mail: b_zhao@126.com

    黄 磊(1975–),男,广东湛江人,博士,特聘教授。主要研究方向为阵列信号处理、雷达信号处理

    周汉飞(1981–),男,博士,博士后。主要研究方向为雷达信号处理

    通讯作者:

    黄磊  dr.lei.huang@ieee.org

1-bit SAR Imaging Method Based on Single-frequency Time-varying Threshold

Funds: The National Natural Science Foundation of China (U1713217, 61501485, 61501300, 61601300, 61601304), The China Postdoctoral Science Foundation (2015M582413, 2017M610547), The Natural Science foundation of Guangdong Province, China (2015A030311030), The Foundation of Shenzhen City (ZDSYS201507081625213, JCYJ20160520165659418, JCYJ20170302142545828, JCYJ20150324140036835), The Shenzhen University (201557, 2016057)
  • 摘要: 该文提出一种基于单频时变阈值的1-bit合成孔径雷达(SAR)成像方法,通过将回波数据与时变阈值比较,将其量化为1-bit采样数据,从而降低SAR回波数据的位宽,达到简化系统、提升效率的目的。传统的1-bit采样将信号与0阈值比较,这将造成信号相对幅度的非线性失真,影响成像质量。而随机时变阈值虽然能够保留幅度信息,却会引入额外的类噪声干扰。单频时变阈值将能够有效地保留1-bit采样量化中丢失的相对幅度信息,同时避免引入类噪声干扰,有效地提高了1-bit采样量化下的SAR成像质量。通过仿真实验定量分析了算法的成像聚焦质量、幅度信息保持能力,并通过对场景目标的成像验证了算法的有效性。

     

  • 图  1  乘法运算实现框图

    Figure  1.  Realization block of multiplication

    图  2  单散射点高分辨距离像

    Figure  2.  High resolution range profile of the single scatterer

    图  3  多散射点高分辨距离像

    Figure  3.  High resolution range profile of multiple scatterers

    图  4  2维SAR成像结果

    Figure  4.  2-Dimension SAR imaging results

    图  5  2维SAR成像结果(局部)

    Figure  5.  2-Dimension SAR imaging results (Local)

    表  1  SAR参数

    Table  1.   SAR parameters

    参数名称 参数值
    信号带宽(MHz) 300
    脉冲宽度(μs) 1
    采样率(GHz) 6.9
    载频(GHz) 37.6
    单频阈值频率(GHz) 16.2
    信号阈值比(dB) 0
    场景中心斜距(km) 10
    天线孔径(m) 1
    载机速度(m/s) 50
    脉冲重复频率(Hz) 400
    下载: 导出CSV

    表  2  单散射点聚焦质量指标

    Table  2.   Focusing quality indexes of the single scatterer

    采样方法 PSLR (dB) ISLR (dB) IRW (m)
    均值 方差 均值 方差 均值 方差
    传统采样 –13.7217 –10.1301 0.4435
    传统1-bit采样 –13.4556 –9.3684 0.4435
    Gaussian 1-bit采样 –13.4054 0.0059 –8.0347 0.0007 0.4435 0.2163×10–5
    Sinusoid 1-bit采样 –13.8106 0.0016 –9.3048 0.0005 0.4474 0.1621×10–5
    下载: 导出CSV

    表  3  多散射点幅度质量指标

    Table  3.   Amplitude quality indexes of multiple scatterers

    采样方法 幅度1 幅度2 幅度3
    均值 误差 方差 均值 误差 方差 均值 误差 方差
    传统采样 0.9729 2.71% 1.9683 1.58% 2.9775 0.75%
    传统1-bit采样 0.1818 0.3185 0.5067
    传统1-bit采样(缩放) 1.1311 13.11% 1.7710 11.45% 3.0834 2.78%
    Gaussian 1-bit采样 1.0477 4.77% 0.0633 1.9870 0.65% 0.0629 2.9920 0.27% 0.0617
    Sinusoid 1-bit采样 1.0181 1.81% 0.0377 2.0186 0.93% 0.0189 2.9812 0.63% 0.0108
    下载: 导出CSV
  • [1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 1–20

    Bao Zheng, Xing Meng-dao, and Wang Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 1–20
    [2] 邢涛, 胡庆荣, 李军, 等. 毫米波高分辨SAR成像算法性能分析[J]. 现代防御技术, 2015, 43(1): 81–86. DOI: 10.3969/j.issn.1009-086x.2015.01.014

    Xing Tao, Hu Qing-rong, Li Jun, et al. Analysis of millimeter wave high resolution SAR imaging algorithm performances[J]. Modern Defence Technology, 2015, 43(1): 81–86. DOI: 10.3969/j.issn.1009-086x.2015.01.014
    [3] 王辉, 赵凤军, 邓云凯. 毫米波合成孔径雷达的发展及其应用[J]. 红外与毫米波学报, 2015, 34(4): 452–459. DOI: 10.11972/j.issn.1001-9014.2015.04.013

    Wang Hui, Zhao Feng-jun, and Deng Yun-kai. Development and application of the millimeter wave SAR[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 452–459. DOI: 10.11972/j.issn.1001-9014.2015.04.013
    [4] 邢涛, 胡庆荣, 李军, 等. 机载毫米波高分辨大斜视合成孔径雷达成像[J]. 浙江大学学报(工学版), 2015, 49(12): 2355–2362. DOI: 10.3785/j.issn.1008-973X.2015.12.016

    Xing Tao, Hu Qing-rong, Li Jun, et al. Synthetic aperture radar imaging of airborne millimeter wave with high resolution and high squint[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(12): 2355–2362. DOI: 10.3785/j.issn.1008-973X.2015.12.016
    [5] 费鹏, 方维海, 温鑫, 等. 用于人员安检的主动毫米波成像技术现状与展望[J]. 微波学报, 2015, 31(2): 91–96

    Fei Peng, Fang Wei-hai, Wen Xin, et al. State of the art and future prospect of the active millimeter wave imaging technique for personnel screening[J]. Journal of Microwaves, 2015, 31(2): 91–96
    [6] 马超, 张小虎, 杨建超, 等. 基于MLBF的毫米波双站SAR前视Omega-k成像算法[J]. 红外与毫米波学报, 2017, 36(4): 490–497. DOI: 10.11972/j.issn.1001-9014.2017.04.018

    Ma Chao, Zhang Xiao-hu, Yang Jian-chao, et al. Omega-k algorithm based on MLBF for millimeter wave bistatic forward-looking SAR imaging[J]. Journal of Infrared and Millimeter Waves, 2017, 36(4): 490–497. DOI: 10.11972/j.issn.1001-9014.2017.04.018
    [7] Franceschetti G, Pascazio V, and Schirinzi G. Processing of signum coded SAR signal: Theory and experiments[J]. IEE Proceedings F-Radar and Signal Processing, 1991, 138(3): 192–198. DOI: 10.1049/ip-f-2.1991.0025
    [8] Franceschetti G, Tesauro M, and Wall S. SAR and one-bit coding: New ideas[C]. IEEE International Geoscience and Remote Sensing Symposium, Lincoln, USA, 1996: 51–53
    [9] Franceschetti G, Impagnatiello F, Rubertone F, et al.. Results of the X-SAR real time one-bit processor[C]. IEEE International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, USA, 2000: 99–101
    [10] 黄杰文, 祁海明, 李杨, 等. DBF-SAR系统1比特量化设计[J]. 宇航学报, 2011, 32(11): 2387–2394. DOI: 10.3873/j.issn.1000-1328.2011.11.013

    Huang Jie-wen, Qi Hai-ming, Li Yang, et al. One-bit quantization for DBF-SAR[J]. Journal of Astronautics, 2011, 32(11): 2387–2394. DOI: 10.3873/j.issn.1000-1328.2011.11.013
    [11] Boufounos P T and Baraniuk R G. 1-bit Compressive sensing[C]. Proceedings of the 42nd Annual Conference on Information Sciences and Systems, Princeton, USA, 2008: 16–21. DOI: 10.1109/CISS.2008.4558487
    [12] Karahanoglu N B and Erdogan H. Compressed sensing signal recovery via forward-backward pursuit[J]. Digital Signal Processing, 2013, 23(5): 1539–1548. DOI: 10.1016/j.dsp.2013.05.007
    [13] Laska J N, Wen Z W, Yin W T, et al. Trust, but verify: Fast and accurate signal recovery from 1-bit compressive measurements[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5289–5301. DOI: 10.1109/TSP.2011.2162324
    [14] Plan Y and Vershynin R. One-bit compressed sensing by linear programming[J]. Communications on Pure and Applied Mathematics, 2013, 66(8): 1275–1297. DOI: 10.1002/cpa.v66.8
    [15] Jacques L, Laska J N, Boufounos P T, et al. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors[J]. IEEE Transactions on Information Theory, 2013, 59(4): 2082–2102. DOI: 10.1109/TIT.2012.2234823
    [16] Plan Y and Vershynin R. Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach[J]. IEEE Transactions on Information Theory, 2013, 59(1): 482–494. DOI: 10.1109/TIT.2012.2207945
    [17] Dong X and Zhang Y H. A MAP approach for 1-bit compressive sensing in synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1237–1241. DOI: 10.1109/LGRS.2015.2390623
    [18] 周崇彬. 单比特合成孔径雷达稀疏成像技术的研究[D]. [博士论文], 中国科学技术大学, 2016: 29–47

    Zhou Chong-bin. Studies on 1-bit coded synthetic aperture radar sparse imaging[D]. [Ph.D. dissertation], University of Science and Technology of China, 2016: 29–47
    [19] Gianelli C, Xu L Z, Li J, et al.. One-bit compressive sampling with time-varying thresholds for sparse parameter estimation[C]. Sensor Array and Multichannel Signal Processing Workshop, Rio de Janerio, Brazil, 2016: 1–5. DOI: 10.1109/SAM.2016.7569634
    [20] Qian C and Li J. ADMM for harmonic retrieval from one-bit sampling with time-varying thresholds[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3699–3703. DOI: 10.1109/ICASSP.2017.7952847
    [21] Stein M S. Signal parameter estimation with 1-bit ADC: Performance bounds, methods and system design[D]. [Ph.D. dissertation], Technische Universität München, 2016: 19–24
    [22] Abramowitz M. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. Washington, USA: Government Printing Office, 1972: 361–556
    [23] Zhao B, Huang L, Li J, et al. Deceptive SAR jamming based on 1-bit sampling and time-varying thresholds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 939–950. DOI: 10.1109/JSTARS.2018.2793247
    [24] Brunet D, Vrscay E R, and Wang Z. On the mathematical properties of the structural similarity index[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1488–1499. DOI: 10.1109/TIP.2011.2173206
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  3300
  • HTML全文浏览量:  984
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-28
  • 修回日期:  2018-06-25
  • 网络出版日期:  2018-08-28

目录

    /

    返回文章
    返回