TerraSAR-X/TanDEM-X升降轨双基干涉模式获取DEM方法研究

秦小芳 张华春 张衡 王宇 刘华有

秦小芳, 张华春, 张衡, 王宇, 刘华有. TerraSAR-X/TanDEM-X升降轨双基干涉模式获取DEM方法研究[J]. 雷达学报, 2018, 7(4): 487-497. doi: 10.12000/JR18022
引用本文: 秦小芳, 张华春, 张衡, 王宇, 刘华有. TerraSAR-X/TanDEM-X升降轨双基干涉模式获取DEM方法研究[J]. 雷达学报, 2018, 7(4): 487-497. doi: 10.12000/JR18022
Qin Xiaofang, Zhang Huachun, Zhang Heng, Wang Yu, Liu Huayou. A High Precision DEM Generation Method Based on Ascending and Descending Pass TerraSAR-X/TanDEM-X BiSAR Data[J]. Journal of Radars, 2018, 7(4): 487-497. doi: 10.12000/JR18022
Citation: Qin Xiaofang, Zhang Huachun, Zhang Heng, Wang Yu, Liu Huayou. A High Precision DEM Generation Method Based on Ascending and Descending Pass TerraSAR-X/TanDEM-X BiSAR Data[J]. Journal of Radars, 2018, 7(4): 487-497. doi: 10.12000/JR18022

TerraSAR-X/TanDEM-X升降轨双基干涉模式获取DEM方法研究

DOI: 10.12000/JR18022
基金项目: 国家重点研发计划(2017YFB0502700)
详细信息
    作者简介:

    秦小芳(1994–),女,湖北人,中国科学院电子学研究所信号与信息处理专业硕士研究生,研究方向为星载多基线干涉。E-mail: qinxiaofang15@mails.ucas.ac.cn

    张华春(1965–),男,中国科学院电子学研究所研究员,研究方向为合成孔径雷达系统集成测试与信号处理。E-mail: hczhang@mail.ie.ac.cn

    张衡:张   衡(1990–),男,山东人,中国科学院电子学研究所通信与信息系统专业博士研究生,研究方向为双基信号处理技术。E-mail: caszhmail@163.com

    王宇:王   宇(1980–),男,河南人,现为中国科学院电子学研究所研究员,博士生导师,研究方向为SAR系统设计与信号处理技术。E-mail: yuwang@mail.ie.ac.cn

    刘华有(1994–),男,江西人,中国科学院电子学研究所通信与信息系统专业硕士研究生,研究方向为多通道InSAR高程重建方法。E-mail: liuhuayou15@mails.ucas.ac.cn

    通讯作者:

    秦小芳  qinxiaofang2017@163.com

A High Precision DEM Generation Method Based on Ascending and Descending Pass TerraSAR-X/TanDEM-X BiSAR Data

Funds: National Key RD Program of China (2017YFB0502700)
  • 摘要: 该文基于TerraSAR-X/TanDEM-X (TSX/TDX)双基升降轨数据,首先采用非局部干涉(NonLocal Interferometric SAR, NL-InSAR)相位滤波分别得到单航过升轨和降轨模式下的高分辨率DEM。在此基础上,基于NL-InSAR估计得到的较准确相干系数,提出一种升降轨DEM融合方法,恢复SAR侧视成像造成的几何畸变,提高DEM重建精度。该文采用两幅北京地区的TSX/TDX升降轨干涉对进行融合处理,结果表明,在地形复杂地区的叠掩和阴影等无效区域,融合之后的DEM无效点数明显减少。经统计,融合后无效点数比例由升轨、降轨的4.93%和4.52%降低到1.34%。同时,融合DEM的精度相比于升轨的6.74 m提高了8.7%、相比于降轨的6.67 m提高了9.6%,融合后高程精度达到6.09 m。

     

  • 图  1  非局部滤波

    Figure  1.  Non-local filtering

    图  2  相干性估计

    Figure  2.  Coherence estimates

    图  3  SAR影像几何畸变图

    Figure  3.  Geometric distortion of SAR image

    图  4  升降轨飞行示意图

    Figure  4.  Sketch map of ascending and descending

    图  5  升降轨DEM预处理

    Figure  5.  Preprocessing of ascending and descending raw DEMs

    图  6  升降轨处理流程图

    Figure  6.  Flow chart of ascending and descending raw DEMs

    图  7  双基模式及实验研究区域

    Figure  7.  the bistatic mode and the research area

    图  8  城区滤波效果对比图

    Figure  8.  Contrast of different filters

    图  9  相干系数图

    Figure  9.  Coherence by different filters

    图  10  DEM对比图

    Figure  10.  DEM contrast by different methods

    图  11  升降轨单基线DEM(红色方框部分是公共区域)

    Figure  11.  Ascending and descending pass raw DEM (Overlaid red boundary is the common arear between two datasets)

    图  12  升降轨融合后的DEM(部分城区)

    Figure  12.  Fusion DEM of ascending and descending pass (City)

    图  13  升降轨融合后的DEM(部分山区)

    Figure  13.  Fusion DEM of ascending and descending pass (Hill)

    表  1  升降轨DEM融合处理表

    Table  1.   Logic table for ascending and descending pass TanDEM-X raw DEMs fusion

    升轨叠掩
    /阴影
    降轨叠掩
    /阴影
    升轨相干系数
    小于阈值
    降轨相干系数
    小于阈值
    融合DEM
    1 1 无效值
    1 0 1 无效值
    1 0 0 降轨h
    0 1 1 无效值
    0 1 0 升轨h
    0 0 0 1 升轨h
    0 0 1 0 降轨h
    0 0 0 0 加权
    0 0 1 1 无效值
    下载: 导出CSV

    表  2  数据集

    Table  2.   Datasets

    数据类型 时间 轨道 垂直基线(m) 入射角(°) 模糊高度(m)
    TDX/TSX 2014-08-19 升轨 104.27 43.34 73.31
    TDX/TSX 2014-04-07 降轨 89.22 45.86 93.21
    下载: 导出CSV

    表  3  缺失区域统计表

    Table  3.   Statistics table of invalids

    处理方法 无效点比例(%)
    升轨 4.93
    降轨 4.52
    融合 1.34
    下载: 导出CSV

    表  4  与SRTM DEM对比高程残差统计表(SRTM)

    Table  4.   Comparison of height difference with respect to SRTM DEM

    处理方法 山区 平地
    升轨DEM (m) 13.55 7.37
    降轨DEM (m) 12.80 6.81
    融合后DEM (m) 11.56 6.61
    下载: 导出CSV

    表  5  高程精度

    Table  5.   Accuracy of different DEMs

    序号 纬度(°) 经度(°) 控制点高程值(m) 升轨DEM (m) 降轨DEM (m) 融合DEM (m)
    高程值 误差 高程值 误差 高程值 误差
    1 39.787079N 116.386766E 36.46 46.19 9.73 47.61 11.15 46.42 9.96
    2 39.946029N 116.180640E 80.67 78.64 –2.03 75.55 –5.12 77.28 –3.39
    3 39.936176N 116.163946E 83.03 76.40 –6.63 81.13 –1.90 80.00 –3.03
    4 39.933121N 116.158557E 90.82 96.75 5.93 95.70 4.88 96.15 5.33
    均方根误差 6.74 6.67 6.09
    下载: 导出CSV
  • [1] 蒋厚军. 高分辨率星载InSAR技术在DEM生成及更新中的应用研究[D]. [博士论文], 武汉大学, 2012: 1–2

    Jiang Hou-jun. High-resolution spaceborne SAR interferometry for DEM generation and updating[D]. [Ph.D. dissertation], Wuhan University, 2012: 1–2
    [2] Farr T G and Kobrick M. Shuttle radar topography mission produces a wealth of data[J]. Eos,Transactions American Geophysical Union, 2000, 81(48): 583–585. DOI: 10.1029/EO081i048p00583
    [3] Krieger G, Moreira A, Fiedler H, et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317–3341. DOI: 10.1109/TGRS.2007.900693
    [4] 邓云凯, 王宇. 先进双基SAR技术研究(英文)[J]. 雷达学报, 2014, 3(1): 1–9. DOI: 10.3724/SP.J.1300.2014.14026

    Deng Yunkai and Wang Robert. Exploration of advanced bistatic SAR experiments[J]. Journal of Radars, 2014, 3(1): 1–9. DOI: 10.3724/SP.J.1300.2014.14026
    [5] Rizzoli P, Bräutigam B, Kraus T, et al. Relative height error analysis of TanDEM-X elevation data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73: 30–38. DOI: 10.1016/j.isprsjprs.2012.06.004
    [6] Rizzoli P, Martone M, Gonzalez C, et al. Generation and performance assessment of the global TanDEM-X digital elevation model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132: 119–139. DOI: 10.1016/j.isprsjprs.2017.08.008
    [7] Martone M, Rizzoli P, Wecklich C, et al. The global forest/non-forest map from TanDEM-X interferometric SAR data[J]. Remote Sensing of Environment, 2017, 205: 352–373.
    [8] Zhu X X, Lachaise M, Adam F, et al.. Beyond the 12 m TanDEM-X DEM[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 2014: 390–393
    [9] 斯奇, 王宇, 邓云凯, 等. 一种基于最大后验框架的聚类分析多基线干涉SAR高度重建算法[J]. 雷达学报, 2017, 6(6): 640–652. DOI: 10.12000/JR17043

    Si Qi, Wang Yu, Deng Yunkai, et al. A novel cluster-analysis algorithm based on MAP framework for multi-baseline InSAR height reconstruction[J]. Journal of Radars, 2017, 6(6): 640–652. DOI: 10.12000/JR17043
    [10] Gao X M, Liu Y L, Li T, et al. High precision DEM generation algorithm based on InSAR multi-look iteration[J]. Remote Sensing, 2017, 9(7): 741. DOI: 10.3390/rs9070741
    [11] 杜亚男, 冯光财, 李志伟, 等. TerraSAR-X/TanDEM-X获取高精度数字高程模型技术研究[J]. 地球物理学报, 2015, 58(9): 3089–3102

    Du Yanan, Feng Guangcai, Li Zhiwei, et al. Generation of high precision DEM from TerraSAR-X/TanDEM-X[J]. Chinese Journal of Geophysics, 2015, 58(9): 3089–3102
    [12] Deledalle C A, Denis L, and Tupin F. NL-InSAR: Nonlocal interferogram estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1441–1452. DOI: 10.1109/TGRS.2010.2076376
    [13] 靳国旺, 徐青, 张红敏. 合成孔径雷达干涉测量[M]. 北京: 国防工业出版社, 2014: 169–183

    Jin Guo-wang, Xu Qing, and Zhang Hong-min. Synthetic Aperture Radar Interferometry[M]. Beijing: National Defend Industry Press, 2014: 169–183
    [14] 刘辉, 靳国旺, 张红敏, 等. DEM辅助的山区InSAR相位解缠[J]. 测绘科学技术学报, 2017, 34(2): 215–220. DOI: 10.3969/j.issn.1673-6338.2017.02.019

    Liu Hui, Jin Guo-wang, Zhang Hong-min, et al. Phase unwrapping assisted by DEM of InSAR for mountainous terrain[J]. Journal of Geomatics Science and Technology, 2017, 34(2): 215–220. DOI: 10.3969/j.issn.1673-6338.2017.02.019
    [15] Kropatsch W G and Strobl D. The generation of SAR layover and shadow maps from digital elevation models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(1): 98–107. DOI: 10.1109/36.45752
    [16] Carrasco D, Díaz J, and Broquetas A. Ascending-descending orbit combination SAR interferometry assessment[C]. Proceedings of the 3rd ERS Symposium, Florence, Italy, 1997: 1789–1794
    [17] 赵争. 地形复杂区域InSAR高精度DEM提取方法[D]. [博士论文], 武汉大学, 2014

    Zhao Zheng. Methods on high-accuracy DEM extraction from interferometric SAR in sophisticated terrain areas[D]. [Ph.D. dissertation], Wuhan University, 2014
    [18] Zhang X J, Zeng Q M, Jiao J, et al. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 111: 32–44. DOI: 10.1016/j.isprsjprs.2015.11.005
    [19] Deo R, Rossi C, Eineder M, et al. Framework for fusion of ascending and descending pass TanDEM-X raw DEMs[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3347–3355. DOI: 10.1109/JSTARS.2015.2431433
    [20] Goodman N R. Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)[J]. Annals of Mathematical Statistics, 1963, 34(1): 152–177. DOI: 10.1214/aoms/1177704250
    [21] Deledalle C A, Denis L, Poggi G, et al. Exploiting patch similarity for SAR image processing: The nonlocal paradigm[J]. IEEE Signal Processing Magazine, 2014, 31(4): 69–78. DOI: 10.1109/MSP.2014.2311305
    [22] Seymour M S and Cumming I G. Maximum likelihood estimation for SAR interferometry[C]. Proceedings of 1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 1994, 4: 2272–2275
    [23] 肖金群. 采用D-InSAR技术获取山区DEM的研究[D]. [硕士论文], 中南大学, 2011: 9–10

    Xiao Jin-qun. DEM generation in mountainous area with differential InSAR technique[D]. [Master dissertation], Central South University, 2011: 9–10
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  4171
  • HTML全文浏览量:  828
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-15
  • 修回日期:  2018-06-12
  • 网络出版日期:  2018-08-28

目录

    /

    返回文章
    返回