基于深度分离卷积神经网络的高速高精度SAR舰船检测

张晓玲 张天文 师君 韦顺军

张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841–851. doi: 10.12000/JR19111
引用本文: 张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841–851. doi: 10.12000/JR19111
ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, et al. High-speed and High-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841–851. doi: 10.12000/JR19111
Citation: ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, et al. High-speed and High-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841–851. doi: 10.12000/JR19111

基于深度分离卷积神经网络的高速高精度SAR舰船检测

DOI: 10.12000/JR19111
基金项目: 国家自然科学基金(61571099, 61501098, 61671113),国家重点研发计划(2017YFB0502700)
详细信息
    作者简介:

    张晓玲(1964–),女,四川人,获电子科技大学工学博士学位,目前为电子科技大学教授/博导,主要从事SAR成像技术、雷达探测技术研究、3维SAR成像的目标散射特性(RCS)反演。E-mail: xlzhang@uestc.edu.cn

    张天文(1994–),男,江苏人,现于电子科技大学信息与通信工程学院攻读博士学位,主要研究领域为SAR成像技术、遥感图像处理与智能识别解译。E-mail: twzhang@std.usetc.edn.cn

    师 君(1979–),男,河南人,获电子科技大学工学博士学位,目前为电子科技大学副教授,主要从事SAR数据处理方面研究。E-mail: shijun@uestc.edu.cn

    韦顺军(1983–),男,广西人,获电子科技大学工学博士学位,目前为电子科技大学副教授,主要从事SAR成像技术、干涉SAR技术研究。E-mail: weishunjun@uestc.edu.cn

    通讯作者:

    张晓玲 xlzhang@uestc.edu.cn

  • 中图分类号: TN957.52

High-speed and High-accurate SAR Ship Detection Based on a Depthwise Separable Convolution Neural Network

Funds: The National Natural Science Foundation of China (61571099, 61501098, 61671113), The National Key R&D Program of China (2017YFB0502700)
More Information
  • 摘要: 随着人工智能的兴起,利用深度学习技术实现SAR舰船检测,能够有效避免传统的复杂特征设计,并且检测精度获得了极大的改善。然而,现如今大多数检测模型往往以牺牲检测速度为代价来提高检测精度,限制了一些SAR实时性应用,如紧急军事部署、迅速海难救援、实时海洋环境监测等。为了解决这个问题,该文提出一种基于深度分离卷积神经网络(DS-CNN)的高速高精度SAR舰船检测方法SARShipNet-20,该方法取代传统卷积神经网络(T-CNN),并结合通道注意力机制(CA)和空间注意力机制(SA),能够同时实现高速和高精度的SAR舰船检测。该方法在实时性SAR应用领域具有一定的现实意义,并且其轻量级的模型有助于未来的FPGA或DSP的硬件移植。

     

  • 图  1  传统卷积神经网络和深度分离卷积神经网络示意图

    Figure  1.  Diagrammatic sketch of T-CNN and DS-CNN

    图  2  网络结构示意图 (SARShipNet-20)

    Figure  2.  Network structure (SARShipNet-20)

    图  3  卷积层内部操作流程

    Figure  3.  Internal operation flow in convolution layers

    图  4  通道注意力机制

    Figure  4.  Channel Attention (CA)

    图  5  空间注意力机制

    Figure  5.  Spatial Attention (SA)

    图  6  SARShipNet-20的SAR舰船检测结果

    Figure  6.  SAR ship detection results of SARShipNet-20

    图  7  SARShipNet-20性能评价曲线

    Figure  7.  Performance evaluation curve of SARShipNet-20

    表  1  SARShipNet-20的SAR舰船检测结果评价指标

    Table  1.   Evaluation index of SAR ship detection results of SARShipNet-20

    类型GTTPFNFPPd (%)Pm (%)Pf (%)Recall (%)Precision (%)mAP (%)Time (ms)
    T-CNN1841804897.832.174.2697.8395.7496.8810.14
    DS-CNN18417592395.114.8911.6295.1188.3893.644.54
    DS-CNN + CA18417952997.282.7213.9497.2889.0695.785.68
    DS-CNN + SA18417861196.743.265.8296.7494.1895.646.67
    DS-CNN + CA + SA1841804897.832.174.2697.8395.7496.938.72
    下载: 导出CSV

    表  2  不同方法的检测性能对比

    Table  2.   Comparison of detection performance of different methods

    方法Pd (%)Pm (%)Pf (%)Recall (%)Precision (%)mAP (%)Time (ms)
    Faster R-CNN[16]85.1614.8418.8585.1681.1582.66327.48
    RetinaNet[34]96.703.306.8896.7093.1295.68314.43
    R-FCN[35]95.654.357.3795.6592.6395.15178.16
    SSD[18]94.515.4914.8594.5185.1592.6748.86
    YOLOv3[20]96.703.306.3896.7093.6295.3422.30
    YOLOv1[28]84.0715.9315.4784.0784.5381.2421.95
    YOLOv2[29]92.867.1415.0892.8684.9290.0919.01
    YOLOv3-tiny[20]70.3329.1222.2970.3377.5864.6410.25
    YOLOv2-tiny[29]47.8052.2026.2747.8073.7344.409.43
    SARShipNet-20(本文方法)97.832.174.2697.8395.7496.938.72
    下载: 导出CSV

    表  3  不同方法的模型对比

    Table  3.   Model comparison of different methods

    方法网络参数的数量浮点运算量(FLOPs)模型大小 (MB)
    Faster R-CNN272,746,867545,429,460752.75
    RetinaNet61,576,342307,592,895235.44
    R-FCN50,578,686101,385,166193.04
    SSD47,663,80695,040,404181.24
    YOLOv336,382,95772,545,184139.25
    YOLOv128,342,19546,981,897,900108.54
    YOLOv223,745,908118,685,13390.73
    YOLOv3-tiny15,770,51031,608,36060.22
    YOLOv2-tiny8,676,24486,692,28433.20
    SARShipNet-20(本文方法)5,867,73711,699,79223.17
    下载: 导出CSV
  • [1] ZHANG Tianwen and ZHANG Xiaoling. High-speed ship detection in SAR images based on a grid convolutional neural network[J]. Remote Sensing, 2019, 11(10): 1206. doi: 10.3390/rs11101206
    [2] ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11(21): 2483. doi: 10.3390/rs11212483
    [3] GAO Gui. A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 557–561. doi: 10.1109/LGRS.2010.2090492
    [4] AN Wentao, XIE Chunhua, and YUAN Xinzhe. An improved iterative censoring scheme for CFAR ship detection with SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4585–4595. doi: 10.1109/TGRS.2013.2282820
    [5] HOU Biao, CHEN Xingzhong, and JIAO Licheng. Multilayer CFAR detection of ship targets in very high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 811–815. doi: 10.1109/LGRS.2014.2362955
    [6] YIN Kuiying, JIN Lin, ZHANG Changchun, et al. A method for automatic target recognition using shadow contour of SAR image[J]. IETE Technical Review, 2013, 30(4): 313–323. doi: 10.4103/0256-4602.116721
    [7] JIANG Shaofeng, WANG Chao, ZHANG Bo, et al. Ship detection based on feature confidence for high resolution SAR images[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 6844–6847. doi: 10.1109/IGARSS.2012.6352591.
    [8] WANG Shigang, WANG Min, YANG Shuyuan, et al. New hierarchical saliency filtering for fast ship detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 351–362. doi: 10.1109/TGRS.2016.2606481
    [9] WANG Chonglei, BI Funkun, CHEN Liang, et al. A novel threshold template algorithm for ship detection in high-resolution SAR images[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 100–103. doi: 10.1109/IGARSS.2016.7729016.
    [10] ZHU Jiwei, QIU Xiaolan, PAN Zongxu, et al. Projection shape template-based ship target recognition in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2): 222–226. doi: 10.1109/LGRS.2016.2635699
    [11] LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 2017: 1–6. doi: 10.1109/BIGSARDATA.2017.8124934.
    [12] 李健伟, 曲长文, 彭书娟. 基于级联CNN的SAR图像舰船目标检测算法[J]. 控制与决策, 2019, 34(10): 2191–2197.

    LI Jianwei, QU Changwen, and PENG Shujuan. A ship detection method based on cascade CNN in SAR images[J]. Control and Decision, 2019, 34(10): 2191–2197.
    [13] CHENG Mingming, LIU Yun, LIN Wenyan, et al. BING: Binarized normed gradients for objectness estimation at 300fps[J]. Computational Visual Media, 2019, 5(1): 3–20. doi: 10.1007/s41095-018-0120-1
    [14] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556v1, 2014.
    [15] 李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09

    LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09
    [16] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [17] 杨龙, 苏娟, 李响. 基于深度卷积神经网络的SAR舰船目标检测[J]. 系统工程与电子技术, 2019, 41(9): 1990–1997. doi: 10.3969/j.issn.1001-506X.2019.09.11

    YANG Long, SU Juan, LI Xiang. Ship detection in SAR images based on deep convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41(9): 1990–1997. doi: 10.3969/j.issn.1001-506X.2019.09.11
    [18] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [19] 胡昌华, 陈辰, 何川, 等. 基于深度卷积神经网络的SAR图像舰船小目标检测[J]. 中国惯性技术学报, 2019, 27(3): 397–405, 414. doi: 10.13695/j.cnki.12-1222/o3.2019.03.018

    HU Changhua, CHEN Chen, HE Chuan, et al. Ship small target detection based on deep convolution neural network in SAR image[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 397–405, 414. doi: 10.13695/j.cnki.12-1222/o3.2019.03.018
    [20] REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv: 1804.02767, 2018.
    [21] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
    [22] SIFRE L. Rigid-motion scattering for image classification[D]. [Ph.D. dissertation], Ecole Polytechnique, CMAP, 2014.
    [23] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. DOI: 10.1007/978-3-030-01234-2_1.
    [24] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [25] HUBEL D H and WIESEL T N. Receptive fields of single neurones in the cat’s striate cortex[J]. The Journal of Physiology, 1959, 148(3): 574–591. doi: 10.1113/jphysiol.1959.sp006308
    [26] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
    [27] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1800–1807. doi: 10.1109/CVPR.2017.195.
    [28] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [29] REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525. doi: 10.1109/CVPR.2017.690.
    [30] IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, French, 2015: 448–456.
    [31] MANASWI N K. Understanding and Working with Keras[M]. MANASWI N K. Deep Learning with Applications Using Python. Apress, Berkeley, CA: Springer, 2018: 31–43.
    [32] ABADI M, AGARWAL A, BARHAM P, et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org[EB/OL]. https://www.bibsonomy.org/bibtex/2ba528cb1d5505ae48100cfc940c5fc3, 2015.
    [33] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv: 1706.05587, 2017.
    [34] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
    [35] DAI Jifeng, HE Kaiming, and SUN Jian. R-FCN: Object detection via region-based fully convolutional networks[J]. arXiv: 1605.06409v2, 2016.
    [36] HE Kaiming, GIRSHICK R, and DOLLÁR P. Rethinking ImageNet pre-training[J]. arXiv: 1811.08883, 2018.
    [37] CUI Zongyong, LI Qi, CAO Zongjie, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983–8997. doi: 10.1109/TGRS.2019.2923988
    [38] 孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097

    SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  7401
  • HTML全文浏览量:  2415
  • PDF下载量:  670
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-16
  • 修回日期:  2019-12-23
  • 网络出版日期:  2019-12-01

目录

    /

    返回文章
    返回