MIMO双基地机载雷达距离模糊杂波抑制方法

王宇卓 朱圣棋 许京伟

王宇卓, 朱圣棋, 许京伟. MIMO双基地机载雷达距离模糊杂波抑制方法[J]. 雷达学报, 2018, 7(2): 202-211. doi: 10.12000/JR18016
引用本文: 王宇卓, 朱圣棋, 许京伟. MIMO双基地机载雷达距离模糊杂波抑制方法[J]. 雷达学报, 2018, 7(2): 202-211. doi: 10.12000/JR18016
Wang Yuzhuo, Zhu Shengqi, Xu Jingwei. A Range-ambiguous Clutter Suppression Method for MIMO Bistatic Airborne Radar[J]. Journal of Radars, 2018, 7(2): 202-211. doi: 10.12000/JR18016
Citation: Wang Yuzhuo, Zhu Shengqi, Xu Jingwei. A Range-ambiguous Clutter Suppression Method for MIMO Bistatic Airborne Radar[J]. Journal of Radars, 2018, 7(2): 202-211. doi: 10.12000/JR18016

MIMO双基地机载雷达距离模糊杂波抑制方法

doi: 10.12000/JR18016
基金项目: 国家自然科学基金委创新研究群体项目(61621005),国家重点研发计划战略性国际科技创新合作重点专项(2016YFE0200400),陕西省国际科技合作重点研发计划(2017KW-ZD-12)
详细信息
    作者简介:

    王宇卓(1992–),男,陕西西安人,西安电子科技大学在读博士。主要研究方向为机载雷达空时信号处理。E-mail: 1145416259@qq.com

    朱圣棋(1984–),男,江西赣州人,西安电子科技大学教授,博士生导师,西安电子科技大学科研院副院长,科技部综合电子信息系统国家级国际合作基地副主任,雷达信号处理国防科技重点实验室教授,中国电子学会高级会员,中国电子学会雷达信号与系统专委会副秘书长,国家自然科学基金创新群体骨干成员,陕西省质量监督局国家质量技术基础科技委专家,发表学术论文90余篇,其中40余篇发表在SCI期刊,申请专利40余项,其中授权20项。主要研究方向为阵列信号处理、空时2维信号处理、机载/星载雷达地面运动目标检测、参数估计以及成像。E-mail: zhushengqi8@163.com

    许京伟(1987–),男,山东日照人,西安电子科技大学讲师,博士,主要研究方向为空时自适应处理、频率分集阵列信号处理等。E-mail: xujingwei1987@163.com

    通讯作者:

    朱圣棋   zhushengqi8@163.com

A Range-ambiguous Clutter Suppression Method for MIMO Bistatic Airborne Radar

Funds: The National Natural Science Foundation of China Innovation Research Group Project (61621005), The National Key RD Program of China (2016YFE0200400), The Key RD Program of Shaanxi Province (2017KW-ZD-12)
  • 摘要: 正侧视阵MIMO(Multiple-Input Multiple-Output)双基地雷达系统具有严重的距离依赖问题和杂波谱展宽现象,该文分析其杂波特性,提出了一种距离模糊杂波抑制方法。该方法在传统的MIMO双基雷达中引入距离相关的相位项,从而提供额外的自由度,通过该相位项的距离信息实现不同距离的杂波分离,并进一步对其进行有效抑制。从而解决了双基地预警雷达大场景下地面杂波距离杂波模糊的问题,仿真结果显示该方法的正确性,并且和已有的DW(Doppler Warping)距离模糊杂波抑制方法进行比较,使用IF(Improve Factor)谱线对抑制结果进行对比,显示该方法有更优的性能。

     

  • 图  1  FDA-MIMO双基地雷达几何结构示意图

    Figure  1.  Geometric schematic diagram of FDA-MIMO bistatic radar

    图  2  接收信号处理框图

    Figure  2.  Block diagram of receiving signal processing

    图  3  双基地雷达杂波谱

    Figure  3.  Bistatic radar clutter spectrum

    图  4  雷达数据处理流程

    Figure  4.  Flow chart of radar data processing

    图  6  $\Delta f$ 不同值时对应的杂波谱

    Figure  6.  The corresponding clutter spectrum of $\Delta f$ at different values

    图  5  双基地雷达杂波谱图

    Figure  5.  Bistatic radar clutter spectrum

    图  7  双基地雷达杂波谱

    Figure  7.  Bistatic radar clutter spectrum

    图  8  雷达杂波IF特性

    Figure  8.  IF characteristics of radar clutter

    图  9  双基地MIMO雷达杂波脊

    Figure  9.  Bistatic MIMO radar clutter ridge

    图  10  FDA-MIMO双基地雷达DW补偿杂波谱

    Figure  10.  FDA-MIMO bistatic radar clutter spectrum of DW compensation method

    图  11  FDA-MIMO双基地雷达IF谱线对比图

    Figure  11.  Comparison of FDA-MIMO bistatic radar IF lines

    表  1  双基地雷达仿真参数

    Table  1.   Simulation parameters of bistatic radar

    参数 参数值 参数 参数值
    发射阵元数 6 发射机高度 12 km
    接收阵元数 6 接收机高度 12 km
    参考工作频率 1.104 GHz 双基基线长度 50 km
    阵列阵元间距 0.0543 m PRF 2434.8 Hz
    发射机速度 140 m/s 相干脉冲数 8
    目标距离 64.964 km 频率增量 1217.4 Hz
    注:在传统MIMO双基地雷达中没有 $\Delta $f 项或者 $\Delta $f 为0
    下载: 导出CSV
  • [1] Willis N J and Griffiths H D. Advances in Bistatic Radar[M]. Raleigh: Scitech Pubishing, 2007: 15–31.
    [2] Behner F, Reuter S, Nies H, et al. Synchronization and processing in the HITCHHIKER bistatic SAR experiment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1028–1035. DOI: 10.1109/JSTARS.2015.2471082
    [3] Hajj G A and Zuffada C. Theoretical description of a bistatic system for ocean altimetry using the GPS signal[J]. Radio Science, 2003, 38(5): 1089. DOI: 10.1029/2002RS002787
    [4] Xie W C and Wang Y L. Range-dependence compensation method for bistatic STAP radar[C]. Proceedings of 2008 Congress on Image and Signal Processing, Sanya, Hainan, 2008: 503–506.
    [5] Samuele Gelli, Alessio Bacci, Marco Martorella, et al.. Clutter suppression and high-resolution imaging of noncooperative ground targets for bistatic airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 932–949.
    [6] Melvin W L, Callahan M J, and Wicks M C. Adaptive clutter cancellation in bistatic radar[C]. Proceedings of the Conference Record of the 34th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2000: 1125–1130.
    [7] Borsari G K. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of 1998 IEEE Radar Conference, Dallas, TX, 1998: 135–140.
    [8] Himed B, Zhang Y, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radars[C]. Proceedings of 2002 IEEE Radar Conference, Long Beach, CA, 2002: 311–317.
    [9] Antonik P, Wicks M C, Griffiths H D, et al.. Range-dependent beamforming using element level waveform diversity[C]. Proceedings of 2006 International Waveform Diversity & Design Conference, Lihue, HI, 2006: 1–6.
    [10] Antonik P, Wicks M C, Griffiths H D, et al.. Multi-mission multi-mode waveform diversity[C]. Proceedings of 2006 IEEE Conference on Radar, Verona, NY, 2006: 580–582. DOI: 10.1109/RADAR.2006.1631858.
    [11] Antonik P, Wicks M C, Griffiths H D, et al.. Frequency diverse array radars[C]. Proceedings of 2006 IEEE Conference on Radar, Verona, NY, 2006: 215–217. DOI: 10.1109/RADAR.2006.1631800.
    [12] Wu J X, Wang T, Zhang L F, et al. Range-dependent clutter suppression for airborne sidelooking radar using MIMO technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3647–3654. DOI: 10.1109/TAES.2012.6324751
    [13] Xie W C, Wang Y L, Zhang B H, et al.. Clutter suppression for bistatic airborne radar with range ambiguity[C]. Proceedings of 2011 IEEE CIE International Conference on Radar, Chengdu, 2011, 2: 1893–1897. DOI: 10.1109/CIE-Radar.2011.6159944.
    [14] Sammartino P F, Baker C J, and Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. DOI: 10.1109/TAES.2013.6404099
    [15] Li J, Liao G S, and Griffiths H. Bistatic MIMO radar space-time adaptive processing[C]. Proceedings of 2011 IEEE Radar Conference, Kansas City, MO, 2011: 498–502. DOI: 10.1109/RADAR.2011.5960587.
    [16] Xu J W, Liao G S, Huang L, et al. Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 973–984. DOI: 10.1109/TSP.2016.2628340
    [17] Klemm R. Comparison between monostatic and bistatic antenna configurations for STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 596–608. DOI: 10.1109/7.845248
    [18] Xu J W, Zhu S Q, and Liao G S. Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1620–1631. DOI: 10.1109/JSTSP.2015.2465353
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2844
  • HTML全文浏览量:  858
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-10
  • 修回日期:  2018-04-20
  • 网络出版日期:  2018-04-28

目录

    /

    返回文章
    返回