基于方位相位编码的脉内聚束SAR成像方法

吴玉峰 叶少华 冯大政

吴玉峰, 叶少华, 冯大政. 基于方位相位编码的脉内聚束SAR成像方法[J]. 雷达学报, 2018, 7(4): 437-445. doi: 10.12000/JR17114
引用本文: 吴玉峰, 叶少华, 冯大政. 基于方位相位编码的脉内聚束SAR成像方法[J]. 雷达学报, 2018, 7(4): 437-445. doi: 10.12000/JR17114
Wu Yufeng, Ye Shaohua, Feng Dazheng. Intra-pulse Spotlight SAR Imaging Method Based on Azimuth Phase Coding[J]. Journal of Radars, 2018, 7(4): 437-445. doi: 10.12000/JR17114
Citation: Wu Yufeng, Ye Shaohua, Feng Dazheng. Intra-pulse Spotlight SAR Imaging Method Based on Azimuth Phase Coding[J]. Journal of Radars, 2018, 7(4): 437-445. doi: 10.12000/JR17114

基于方位相位编码的脉内聚束SAR成像方法

DOI: 10.12000/JR17114
基金项目: 航空基金(2015ZC07005)
详细信息
    作者简介:

    吴玉峰(1985–),男,浙江衢州人,博士,工程师。现为中国航空工业集团公司雷华电子技术研究所系统工程师,主要研究方向为SAR系统设计、SAR成像算法。E-mail: wyf1176@163.com

    叶少华(1966–),男,江苏江阴人,研究员,副总工程师。现为中国航空工业集团公司雷华电子技术研究所副总工程师,主要研究方向为雷达系统设计、雷达信号处理。E-mail: ye_shaohua@sina.com

    冯大政(1959–),男,陕西安康人,教授,博士生导师。现为西安电子科技大学电子工程学院二级教授,主要研究方向为雷达信号处理、类脑神经网络和图像处理等。E-mail: dzfeng@xidian.edu.cn

    通讯作者:

    吴玉峰   wyf1176@163.com

Intra-pulse Spotlight SAR Imaging Method Based on Azimuth Phase Coding

Funds: The Aeronautical Foundation of China (2015ZC07005)
  • 摘要: 脉内聚束模式有效克服了星载合成孔径雷达(Synthetic Aperture Radar, SAR)高分辨率与宽测绘带之间的矛盾,同时可以兼顾回波的信噪比。然而距离维空域滤波的信号分离方法容易受地形起伏的影响,甚至失效。针对此,该文提出了一种结合方位相位编码(Azimuth Phase Coding, APC)的脉内聚束SAR成像方法,利用APC技术使不同子脉冲回波的方位频谱处在不同的脉冲重复频率(Pulse Repetition Frequencies, PRF)范围,然后利用方位自适应波束形成技术来分离回波信号。文中对信号分离方法以及频移因子的选择进行了详细的讨论。最后仿真实验结果验证了所提方法的有效性。

     

  • 图  1  方位多通道脉内聚束SAR收发信号模型

    Figure  1.  Transmitting and receiving signal modes of azimuth multi-channel intra-pulse spotlight SAR

    图  2  斜距平面成像几何

    Figure  2.  Imaging geometry in the slant-range plane

    图  3  不同方位子场景回波信号的时频关系

    Figure  3.  Time-frequency relation of different azimuth sub-scene echo signal

    图  4  引入APC技术后的时频关系

    Figure  4.  Time-frequency relation after adopting the APC technique

    图  5  某一通道的回波信号及其频谱

    Figure  5.  Echo signal and spectrum of one channel

    图  6  文献[13]方法信号分离结果

    Figure  6.  Signal division results by the method in Ref. [13]

    图  7  本文方法信号分离结果

    Figure  7.  Signal division results by the method in the paper

    图  8  完整的多普勒频谱以及成像结果

    Figure  8.  Imaging result of the combined complete Doppler spectrum

    图  9  面目标仿真结果

    Figure  9.  Simulation results of area target

    表  1  仿真参数

    Table  1.   Simulation parameters

    参数 参数
    雷达载频(GHz) 9.65 方位孔径(m) 4.8
    脉冲总时宽(μs) 30 脉冲重复频率(Hz) 3600
    子脉冲信号带宽(MHz) 150 场景中心距离(km) 596
    采样频率(MHz) 180 子脉冲个数 3
    平台速度(m/s) 7200 方位通道数 3
    下载: 导出CSV

    表  2  成像性能参数统计

    Table  2.   Parameters of the focused targets

    距离向 方位向
    PSLR (dB) –13.28 PSLR (dB) –13.28
    ISLR (dB) –9.67 ISLR (dB) –9.81
    分辨率 (m) 1.0087 分辨率 (m) 0.8157
    下载: 导出CSV
  • [1] Freeman A, Johnson W T K, Huneycutt B, et al. The " Myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320–324. DOI: 10.1109/36.823926
    [2] Fan B, Qin Y L, You P, et al. An improved PFA with aperture accommodation for widefield spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 3–7. DOI: 10.1109/LGRS.2014.2322858
    [3] Wu Y, Sun G C, Yang C, et al. Processing of very high resolution spaceborne sliding spotlight SAR data using velocity scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1505–1518. DOI: 10.1109/TGRS.2015.2481923
    [4] Li N, Wang R, Deng Y K, et al. Improved full-aperture ScanSAR imaging algorithm based on aperture interpolation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1101–1105. DOI: 10.1109/LGRS.2014.2384594
    [5] Meta A, Mittermayer J, Prats P, et al. TOPS imaging with TerraSAR-X: Mode design and performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 759–769. DOI: 10.1109/TGRS.2009.2026743
    [6] Callaghan G D and Longstaff I D. Wide-swath space-borne SAR and range ambiguity[C]. Radar 97, Edinburgh, UK, 1997: 248–252
    [7] 李杨, 黄杰文, 禹卫东. 高分辨率宽测绘带星载SAR距离向DBF处理[J]. 电子与信息学报, 2011, 33(6): 1510–1514. DOI: 10.3724/SP.J.1146.2010.01157

    Li Yang, Huang Jie-wen, and Yu Wei-dong. Range DBF processing for high-resolution wide-swath spaceborne SAR[J]. Journal of Electronics&Information Technology, 2011, 33(6): 1510–1514. DOI: 10.3724/SP.J.1146.2010.01157
    [8] Wang W, Wang R, Deng Y K, et al. Improved digital beam-forming approach with scaling function for range multi-channel synthetic aperture radar system[J]. IET Radar,Sonar&Navigation, 2016, 10(2): 379–385.
    [9] Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(2): 122–135. DOI: 10.1049/ip-f-2.1992.0016
    [10] Liu B C and He Y J. Improved DBF algorithm for multichannel high-resolution wide-swath SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1209–1225. DOI: 10.1109/TGRS.2015.2476496
    [11] Li X S, Xing M D, Xia X G, et al. Simultaneous stationary scene imaging and ground moving target indication for high-resolution wide-swath SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4224–4239. DOI: 10.1109/TGRS.2016.2538564
    [12] Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. DOI: 10.1109/TGRS.2007.905974
    [13] 武其松, 邢孟道, 刘保昌, 等. 脉内聚束SAR方位高分辨率宽测绘带成像[J]. 西安电子科技大学学报(自然科学版), 2010, 37(4): 676–682, 699. DOI: 10.3969/j.issn.1001-2400.2010.04.017

    Wu Qi-song, Xing Meng-dao, Liu Bao-chang, et al. High azimuth resolution wide swath imaging based on the intrapulse spotlight SAR[J]. Journal of Xidian University, 2010, 37(4): 676–682, 699. DOI: 10.3969/j.issn.1001-2400.2010.04.017
    [14] Dall J and Kusk A. Azimuth phase coding for range ambiguity suppression in SAR[C]. International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004, 3: 1734–1737
    [15] 郭磊, 王宇, 邓云凯, 等. 基于方位向相位编码技术的方位向多通道SAR距离模糊抑制方法[J]. 电子与信息学报, 2015, 37(3): 601–606. DOI: 10.11999/JEIT140707

    Guo Lei, Wang Yu, Deng Yun-kai, et al. Range ambiguity suppression for multi-channel SAR system using azimuth phase coding technique[J]. Journal of Electronics&Information Technology, 2015, 37(3): 601–606. DOI: 10.11999/JEIT140707
    [16] 邢孟道, 李真芳, 保铮, 等. 分布式小卫星雷达空时频成像方法研究[J]. 宇航学报, 2005, 26(S1): 70–76, 82. DOI: 10.3321/j.issn:1000-1328.2005.z1.014

    Xing Meng-dao, Li Zhen-fang, Bao Zheng, et al. Study of distributed microsatellites radar space-time-frequency imaging method[J]. Journal of Astronautics, 2005, 26(S1): 70–76, 82. DOI: 10.3321/j.issn:1000-1328.2005.z1.014
    [17] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood, MA, USA: Artech House, 2005
    [18] Zhang S X, Xing M D, Xia X G, et al. Multichannel HRWS SAR imaging based on range-variant channel calibration and multi-Doppler-direction restriction ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4306–4327. DOI: 10.1109/TGRS.2013.2281329
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2504
  • HTML全文浏览量:  607
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-28
  • 修回日期:  2018-02-07
  • 网络出版日期:  2018-08-28

目录

    /

    返回文章
    返回