太赫兹低频段随机粗糙金属板散射特性研究

陈刚 党红杏 谭小敏 陈珲 崔铁军

陈刚, 党红杏, 谭小敏, 陈珲, 崔铁军. 太赫兹低频段随机粗糙金属板散射特性研究[J]. 雷达学报, 2018, 7(1): 75-82. doi: 10.12000/JR17093
引用本文: 陈刚, 党红杏, 谭小敏, 陈珲, 崔铁军. 太赫兹低频段随机粗糙金属板散射特性研究[J]. 雷达学报, 2018, 7(1): 75-82. doi: 10.12000/JR17093
Chen Gang, Dang Hongxing, Tan Xiaomin, Chen Hui, Cui Tiejun. Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region[J]. Journal of Radars, 2018, 7(1): 75-82. doi: 10.12000/JR17093
Citation: Chen Gang, Dang Hongxing, Tan Xiaomin, Chen Hui, Cui Tiejun. Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region[J]. Journal of Radars, 2018, 7(1): 75-82. doi: 10.12000/JR17093

太赫兹低频段随机粗糙金属板散射特性研究

DOI: 10.12000/JR17093
基金项目: 国家部委基金
详细信息
    作者简介:

    陈 刚(1980–),男,江苏泗阳人,博士,工程师。2014年在东南大学毫米波国家重点实验室获得博士学位。现在中国空间技术研究院西安分院担任工程师,主要从事太赫兹目标散射、成像和雷达系统仿真。E-mail: 173536425@qq.com

    党红杏(1974–),女,硕士,中国空间技术研究院西安分院研究员,主要从事雷达探测、成像系统设计和新体制雷达的论证工作,是探月和火星探测测距测速敏感器型号系统主任设计师

    谭小敏(1980–),男,硕士,中国空间技术研究院西安分院研究员,主要从事雷达探测、成像系统总体设计,是探月和火星探测测距测速敏感器型号系统的项目负责人

    陈 珲(1984–),男,博士,东南大学毫米波国家重点实验室副教授,目前主要研究复杂环境下复杂目标的电磁散射建模、成像算法仿真和设计。E-mail: hchen@seu.edu.cn

    崔铁军(1965–),男,博士,东南大学毫米波国家重点实验室教授、博士生导师,IEEE Fellow,长江学者。目前主要研究方向为计算电磁学及其快速算法、新型人工电磁材料的理论、实验及应用研究、目标特性与目标识别、大型军用目标的精确电磁仿真等。E-mail: tjcui@seu.edu.cn

    通讯作者:

    陈刚   173536425@qq.com

  • 中图分类号: TN957

Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region

Funds: The National Ministries Foundation
  • 摘要: 该文提出了一种高效混合近似算法计算太赫兹频段无限薄金属板的电磁散射特性。在太赫兹低频段,金属目标可以被视为具有微粗糙表面的理想导体,散射场可以分为相干场和非相干场。该文采用物理光学法结合截断劈增量长度绕射系数法和微扰法来计算金属板的电磁散射分布。基于蒙特卡洛方法,分别利用多层快速多极子和提出的混合算法计算太赫兹低频段金属板的雷达散射截面,仿真结果表明该文提出的混合算法能够高效快速地给出太赫兹低频段金属板的电磁散射特性。

     

  • 图  1  PO散射示意图

    Figure  1.  Schematic diagram of the scattered field with PO method

    图  2  粗糙表面散射示意图

    Figure  2.  Schematic diagram of rough surface scattering

    图  3  无限薄粗糙平板示意图

    Figure  3.  Schematic diagram of an infinitely thin rough PEC plate

    图  4  无限薄平板单站VV极化MLFMA计算RCS分布

    Figure  4.  Monostatic VV-polarization RCS of the infinitely thin PEC plate by MLFMA algorithm

    图  5  无限薄平板双站VV极化MLFMA计算RCS分布

    Figure  5.  Bistatic VV-polarization RCS of the infinitely thin PEC plateby MLFMA algorithm

    图  6  双站VV极化RCS结果分布(300 GHz)。角度设置为 ${\theta _{\rm{i}}}$ =15°, ${\varphi _{\rm{i}}}$ =180°, ${\varphi _{\rm{s}}}$ =0°, ${\theta _{\rm{s}}}$ =0°~90°共91个点

    Figure  6.  Bistatic VV-polarization RCS of the infinitely thin rough PEC plate at 300 GHz. The incident direction is given by ${\theta _{\rm{i}}}$ =15° and ${\varphi _{\rm{i}}}$ =180°. The observation angle is from ${\theta _{\rm{s}}}$ =0° to ${\theta _{\rm{s}}}$ =90° with 91 points, in which ${\varphi _{\rm{s}}}$ =0°

    图  7  双站HH极化RCS结果分布(300 GHz)。角度设置为 ${\theta _{\rm{i}}}$ =15°, ${\varphi _{\rm{i}}}$ =180°, ${\varphi _{\rm{s}}}$ =0°, ${\theta _{\rm{s}}}$ =0°~90°共91个点

    Figure  7.  Bistatic HH-polarization RCS of the infinitely thin rough PEC plate at 300 GHz. The incident direction is given by ${\theta _{\rm{i}}}$ =15° and ${\varphi _{\rm{i}}}$ =180°. The observation angle is from ${\theta _{\rm{s}}}$ =0° to ${\theta _{\rm{s}}}$ =90° with 91 points, in which ${\varphi _{\rm{s}}}$ =0°

    图  8  双站VV极化RCS结果分布(300 GHz)。角度设置为 ${\theta _{\rm{i}}}$ =15°, ${\varphi _{\rm{i}}}$ =180°, ${\theta _{\rm{s}}}$ =15°, ${\varphi _{\rm{s}}}$ =0°~360°共361个点

    Figure  8.  Bistatic VV-polarization RCS of the infinitely thin rough PEC plate at 300 GHz. The incident direction is given by ${\theta _{\rm{i}}}$ =15° and ${\varphi _{\rm{i}}}$ =180°. The observation angle is from ${\varphi _{\rm{s}}}$ =0° to ${\varphi _{\rm{s}}}$ =360° with 361 points, in which ${\theta _{\rm{s}}}$ =15°

    图  9  双站HH极化RCS结果分布(300 GHz)。角度设置为 ${\theta _{\rm{i}}}$ =15°, ${\varphi _{\rm{i}}}$ =180°, ${\theta _{\rm{s}}}$ =15°, ${\varphi _{\rm{s}}}$ =0°~360°共361个点

    Figure  9.  Bistatic HH-polarization RCS of the infinitely thin rough PEC plate at 300 GHz. The incident direction is given by ${\theta _{\rm{i}}}$ =15° and ${\varphi _{\rm{i}}}$ =180°. The observation angle is from ${\varphi _{\rm{s}}}$ =0° to ${\varphi _{\rm{s}}}$ =360° with 361 points, in which ${\theta _{\rm{s}}}$ =15°

    图  10  单站VV极化RCS结果分布(300 GHz)。角度设置为 ${\varphi _{\rm{i}}}$ =0°, ${\theta _{\rm{i}}}$ =0°~90°共91个点

    Figure  10.  Monostatic VV-polarization RCS of the PEC infinitely thin rough plate at 300 GHz. The observation angle is from ${\theta _{\rm{i}}}$ =0° to ${\theta _{\rm{i}}}$ =90° with 91 points, in which ${\varphi _{\rm{i}}}$ =0°

    图  11  单站HH极化RCS结果分布(300 GHz)。角度设置为 ${\varphi _{\rm{i}}}$ =0°, ${\theta _{\rm{i}}}$ =0°~90°共91个点

    Figure  11.  Monostatic HH-polarization RCS of the PEC infinitely thin rough plate at 300 GHz. The observation angle is from ${\theta _{\rm{i}}}$ =0° to ${\theta _{\rm{i}}}$ =90° with 91 points, in which ${\varphi _{\rm{i}}}$ =0°

  • [1] 许景周, 张希成. 太赫兹科学技术和应用[M]. 北京: 北京大学出版社, 2007.

    Xu Jing-zhou and Zhang Xi-cheng. Terahertz Science Technology and Application[M]. Beijing, China: Peking University Press, 2007.
    [2] 王瑞君, 王宏强, 庄钊文, 等. 太赫兹雷达技术研究进展[J]. 激光与光电子学进展, 2013, 50(4): 040001

    Wang Rui-jun, Wang Hong-qiang, Zhuang Zhao-wen, et al. Research progress of terahertz radar technology[J]. Laser&Optoelectronics Progress, 2013, 50(4): 040001
    [3] Cooper K B, Dengler R J, Llombart N, et al. Penetrating 3-D imaging at 4-and 25-m range using a submillimeter-wave radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2771–2778. DOI: 10.1109/TMTT.2008.2007081
    [4] Li Z, Cui T J, Zhong X J, et al. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39–50. DOI: 10.1109/MAP.2009.4939018
    [5] Zhong X J, Cui T J, Li Z, et al. Terahertz-wave scattering by perfectly electrical conducting objects[J]. Journal of Electromagnetic Waves and Applications, 2007, 21(15): 2331–2340. DOI: 10.1163/156939307783134443
    [6] Wu Z S. IR laser backscattering from an arbitrarily shaped dielectric object with rough surface[J]. Journal of Electronics(China) , 1993, 10(4): 298–306. DOI: 10.1007/BF02783158
    [7] Ruck G T, Barrick D E, Stuart W D, et al.. Radar Cross Section Handbook[M]. New York: Plenum Press, 1970, Ch.9.
    [8] Ulaby F T, Moore R K, and Fung A K. Microwave Remote Sensing, vol. II[M]. Boston, USA: Artech House, 1978, Ch.12.
    [9] Johansen P M. Uniform physical theory of diffraction equivalent edge currents for truncated wedge strips[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(7): 989–995. DOI: 10.1109/8.504306
    [10] Wu Z S and Cui S M. Bistatic scattering by arbitrarily shaped objects with rough surface at optical and infrared frequencies[J]. International Journal of Infrared and Millimeter Waves, 1992, 13(4): 537–549. DOI: 10.1007/BF01010711
    [11] Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal of the Acoustical Society of America, 1988, 83(1): 78–92. DOI: 10.1121/1.396188
  • 加载中
图(11)
计量
  • 文章访问数:  2395
  • HTML全文浏览量:  628
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2018-01-04
  • 网络出版日期:  2018-02-28

目录

    /

    返回文章
    返回