粗糙金属和介质目标的太赫兹散射特性分析

牟媛 吴振森 赵豪 武光玲

牟媛, 吴振森, 赵豪, 武光玲. 粗糙金属和介质目标的太赫兹散射特性分析[J]. 雷达学报, 2018, 7(1): 83-90. doi: 10.12000/JR17094
引用本文: 牟媛, 吴振森, 赵豪, 武光玲. 粗糙金属和介质目标的太赫兹散射特性分析[J]. 雷达学报, 2018, 7(1): 83-90. doi: 10.12000/JR17094
Mou Yuan, Wu Zhensen, Zhao Hao, Wu Guangling. The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets[J]. Journal of Radars, 2018, 7(1): 83-90. doi: 10.12000/JR17094
Citation: Mou Yuan, Wu Zhensen, Zhao Hao, Wu Guangling. The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets[J]. Journal of Radars, 2018, 7(1): 83-90. doi: 10.12000/JR17094

粗糙金属和介质目标的太赫兹散射特性分析

DOI: 10.12000/JR17094
基金项目: 国家自然科学基金(61571355)
详细信息
    作者简介:

    牟 媛(1989–),女,2011年获得西安电子科技大学学士学位,于2011年在西安电子科技大学物理与光电学院硕博连读,主要从事太赫兹波段介质目标的散射特性方面的研究。E-mail: Mirandamyuan@163.com

    吴振森(1946–),男,教授,博士生导师,1969年7月毕业于西安交通大学数理系,1981年武汉大学空间物理系研究生毕业,获理学硕士学位。主要从事目标与环境的电磁特性和光特性、随机介质和复杂结构的电磁波传播和散射等方面的研究。E-mail: wuzhs@mail.xidian.edu.cn

    赵 豪(1994–),男,2016年获得西安电子科技大学工学学士学位,现于西安电子科技大学电子工程学院攻读硕士学位。主要从事太赫兹频段空间动态目标散射的高性能计算的研究。E-mail: 137611634@qq.com

    武光玲(1980–),女,2004年本科毕业于西安电子科技大学应用物理专业,2007年硕士毕业于西安电子科技大学无线电物理专业,主讲《大学物理》和《大学物理实验》,主要从事目标表面光散射特性研究。E-mail: glwu@mail.xidian.edu.cn

    通讯作者:

    牟媛   Mirandamyuan@163.com

  • 中图分类号: O436.2

The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets

Funds: The National Natural Science Fundation of China (61571355)
  • 摘要: 太赫兹频段金属和介质粗糙目标的散射特性是研究太赫兹雷达目标特性的重要基础。当目标表面的主曲率半径远远大于入射波长,且粗糙表面高度起伏与斜率起伏远小于入射波长时,根据稳定相位法和标量近似法,可获得粗糙金属和介质目标的相干散射截面和非相干散射截面。基于稳定相位法,任意目标的相干散射截面可退化为粗糙导体、光滑介质和粗糙介质目标的相干散射。该文分析了电大尺寸光滑金属铝和介质白漆球的散射截面,与Mie理论计算的介质球的散射特性吻合,散射截面误差小于0.1 dBm2。采用朗伯定理,验证了粗糙介质球的太赫兹非相干散射精确解,当目标表面剖分精度越高,非相干散射的计算精度越高。该文数值计算了粗糙介质球的太赫兹相干和非相干散射特性,分析了表面粗糙度和表面材料对散射特性的影响,为电大尺寸空间目标太赫兹散射特性分析提供了理论基础。

     

  • 图  1  粗糙介质目标的散射场

    Figure  1.  Scattered fields of rough dielectric targets

    图  2  切平面局部示意图

    Figure  2.  Local schematic diagram of tangent plane

    图  3  光滑球太赫兹散射解的定标

    Figure  3.  Terahertz scattering calibration of the smooth sphere

    图  4  朗伯球非相干散射定标

    Figure  4.  Incoherent scattering calibration of Lambert sphere

    图  5  粗糙介质球的双站相干散射截面

    Figure  5.  Coherentbistatic scattering cross sections of rough dielectric spheres

    图  6  粗糙金属铝球的非相干散射截面随均方根高度的变化

    Figure  6.  Incoherent scattering cross sections of rough aluminum spheres with different root mean square heights

    图  7  粗糙金属铝球的非相干散射截面随相关长度的变化

    Figure  7.  Incoherent scattering cross sections of rough aluminum spheres with different correlation lengths

    图  8  粗糙介质白漆球的非相干散射截面随均方根高度的变化

    Figure  8.  Incoherent scattering cross sections of rough painted spheres with different root mean square heights

    图  9  粗糙介质白漆球的非相干散射截面随相关长度的变化

    Figure  9.  Incoherent scattering cross sections of rough painted spheres with different correlation lengths

  • [1] Lee Y S. Principles of Terahertz Science and Technology[M]. New York: Springer, 2009: 1–9.
    [2] Piesiewicz R, Jansen C, Mittleman D, et al. Scattering analysis for the modeling of THz communication systems[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 3002–3009. DOI: 10.1109/TAP.2007.908559
    [3] Fletcher J R, Swift G P, Dai D C, et al.. Scattering in THz imaging[C]. Proceedings of the SPIE 5989, Technologies for Optical Countermeasures II; Femtosecond Phenomena II; and Passive Millimetre-Wave and Terahertz Imaging II, Bruges, Belgium, 2005, 5989: 598912. DOI: 10.1117/ 12.638007.
    [4] Duvillaret L, Garet F, and Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 739–746. DOI: 10.1109/2944.571775
    [5] Nagashima T and Hangyo M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry[J]. Applied Physics Letters, 2001, 79(24): 3917–3919. DOI: 10.1063/1.1426258
    [6] 苏杰, 孙诚, 王晓秋. 一个适用于数值计算的金属色散模型分析研究[J]. 光电子·激光, 2013, 24(2): 408–414. DOI: 10.16136/j.joel.2013.02.011

    Su Jie, Sun Cheng, and Wang Xiao-qiu. A metallic dispersion model for numerical simulation[J]. Journal of Optoelectronics·Laser, 2013, 24(2): 408–414. DOI: 10.16136/j.joel.2013.02.011
    [7] Ordal M A, Bell R J, Alexander R W, et al. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths[J].Applied Optics, 1988, 27(6): 1203–1209. DOI: 10.1364/AO.27.001203
    [8] 华厚强, 江月松, 苏林, 等. 自由空间复杂导体目标的太赫兹RCS高频分析方法[J]. 红外与激光工程, 2014, 43(3): 687–693

    Hua Hou-qiang, Jiang Yue-song, Su Lin, et al. High-frequency analysis on THz RCS of complex conductive targets in free space[J]. Infrared and Laser Engineering, 2014, 43(3): 687–693
    [9] Li Z, Cui T J, Zhong X J, et al. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39–50. DOI: 10.1109/MAP.2009.4939018
    [10] 王瑞君, 邓彬, 王宏强, 等. 太赫兹与远红外频段下铝质目标电磁特性与计算[J]. 物理学报, 2014, 63(13): 134102. DOI: 10.7498/aps.63.134102

    Wang Rui-jun, Deng Bin, Wang Hong-qiang, et al. Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region[J]. Acta Physica Sinica, 2014, 63(13): 134102. DOI: 10.7498/aps.63.134102
    [11] Jansen C, Priebe S, Möller C, et al. Diffuse scattering from rough surfaces in THz communication channels[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 462–472. DOI: 10.1109/TTHZ.2011.2153610
    [12] Nam K M, Zurk L M, and Schecklman S. Modeling terahertz diffuse scattering from granular media using radiative transfer theory[J]. Progress in Electromagnetics Research B, 2012, 38: 205–223. DOI: 10.2528/PIERB11102304
    [13] Sundberg G, Zurk L M, Schecklman S, et al. Modeling rough-surface and granular scattering at terahertz frequencies using the Finite-Difference time-domain method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3709–3719. DOI: 10.1109/TGRS.2010.2048717
    [14] Jansen C, Krumbholz N, Geise R, et al.. Scaled radar cross section measurements with terahertz-spectroscopy up to 800 GHz[C]. Proceedings of the 3rd European Conference on Antennas and Propagation, Berlin, 2009: 3645–3648.
    [15] 聂雪莹, 项飞荻, 黄欣, 等. 金属平板的太赫兹雷达散射截面测量[J]. 激光技术, 2016, 40(5): 676–681. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.012

    Nie Xue-ying, Xiang Fei-di, Huang Xin, et al. Measurement of terahertz radar cross sections of metal plates[J]. Laser Technology, 2016, 40(5): 676–681. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.012
    [16] 杨洋, 刘兵, 张镜水, 等. 粗糙金属表面的高频太赫兹散射特性[J]. 激光与红外, 2014, 44(8): 922–926

    Yang Yang, Liu Bing, Zhang Jing-shui, et al. Influence of rough metal surface on the scattering properties of terahertz frequency[J]. Laser&Infrared, 2014, 44(8): 922–926
    [17] 杨洋, 景磊. 金属介电常数对雷达目标散射截面的影响[J]. 激光与红外, 2013, 43(2): 155–158

    Yang Yang and Jing Lei. Impact of the metal permittivity on radar target scattering cross section[J]. Laser&Infrared, 2013, 43(2): 155–158
    [18] Ulaby F T, Moore R K, and Fung A K. Microwave Remote Sensing: Active and Passive. Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory[M]. Norwood: Artech House, Inc., 1982: 304–307.
    [19] Wu Z S and Cui S M. Bistatic scattering by arbitrarily shaped objects with rough surface at optical and infrared frequencies[J]. International Journal of Infrared and Millimeter Waves, 1992, 13(4): 537–549. DOI: 10.1007/BF01010711
  • 加载中
图(9)
计量
  • 文章访问数:  2030
  • HTML全文浏览量:  586
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2017-12-13
  • 网络出版日期:  2018-02-28

目录

    /

    返回文章
    返回